Hoover High School Math League
 March 18-19, 2009

Bases other than 10: Theory

Integers

Any nonnegative integer N (in base 10) with digits $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0}$, can be written as a sum of multiples of powers of 10 :

$$
\begin{aligned}
N=a_{n} a_{n-1} \ldots a_{1} a_{0} & =a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\ldots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\ldots+a_{2} \cdot 10^{2}+a_{1} \cdot 10^{1}+a_{0} \cdot 10^{0} .
\end{aligned}
$$

Similarly, for any natural number b, we can write the number N as a sum of multiples of powers of b (with coefficients less than b):

$$
N=c_{k} \cdot b^{k}+c_{k-1} \cdot b^{k-1}+\ldots+c_{2} \cdot b^{2}+c_{1} \cdot b^{1}+c_{0} \cdot b^{0}
$$

Then we say that $\left(c_{k} c_{k-1} \ldots c_{2} c_{1} c_{0}\right)_{b}$ is the base b representation of the number N.
Example 1. Let $N=100$.

For $b=2$, the coefficients must be less than 2 , so they can only be either 0 or 1 . Since

$$
\begin{gathered}
100=1 \cdot 2^{6}+1 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+0 \cdot 2^{0} \\
100=1100100_{2}
\end{gathered}
$$

The base 2 representation is called the binary representation.
For $b=3$, the coefficients must be less than 3 . Since

$$
100=1 \cdot 3^{4}+0 \cdot 3^{3}+2 \cdot 3^{2}+0 \cdot 3^{1}+1 \cdot 3^{0}
$$

the base 3 representation of 100 is

$$
100=10201_{3}
$$

Example 2. To find what number (in base 10) is represented by 1234_{5} (base 5), we compute the corresponding sum:

$$
1234_{5}=1 \cdot 5^{3}+2 \cdot 5^{2}+3 \cdot 5^{1}+4 \cdot 5^{0}=1 \cdot 125+2 \cdot 25+3 \cdot 5+4 \cdot 1=194
$$

Remark. If base $b>10$, letters A, B, C, etc. are used for "digits" $10,11,12$, etc. respectively.
Example 3. In base 15, the number $A 3 D_{15}$ represents $10 \cdot 15^{2}+3 \cdot 15+13=2308$.

Decimals

The idea is similar to that for integers. In base 10 , a decimal can be written as

$$
0 . a_{1} a_{2} a_{3} \ldots=a_{1} \cdot \frac{1}{10}+a_{1} \cdot \frac{1}{10^{2}}+a_{1} \cdot \frac{1}{10^{3}}+\ldots
$$

For a decimal represented in base b, we have

$$
\left(0 . c_{1} c_{2} c_{3} \ldots\right)_{b}=c_{1} \cdot \frac{1}{b}+c_{1} \cdot \frac{1}{b^{2}}+c_{1} \cdot \frac{1}{b^{3}}+\ldots .
$$

Example. The number 0.1234_{5} represents
$0.1023_{5}=1 \cdot \frac{1}{5}+0 \cdot \frac{1}{5^{2}}+2 \cdot \frac{1}{5^{3}}+3 \cdot \frac{1}{5^{4}}=\frac{1}{5}+\frac{2}{5^{3}}+\frac{3}{5^{4}}=\frac{5^{3}+2 \cdot 5+3}{5^{4}}=\frac{125+10+3}{625}=\frac{138}{625}=0.2208$

