Hoover High School Math League

March 25-26, 2009

Coordinate Geometry: Solutions

1. (MH 11-12 1997) Find the distance between $(2,-1)$ and $(7,4)$.
(a) 6
(b) $\sqrt{50}$
(c) $\sqrt{130}$
(d) 12
(e) None of the above

Solution. Using the distance formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

we have $d=\sqrt{(7-2)^{2}+(4+1)^{2}}=\sqrt{50}$.
2. (MH 11-12 2000) The equation of the line parallel to the line $4 y-x=20$ and containing the point $(2,-3)$ is
(a) $y=4 x-7$
(b) $y=\frac{1}{4} x-\frac{7}{2}$
(c) $y=\frac{3}{4} x+\frac{7}{2}$
(d) $y=-4 x+5$
(e) None of the above

Solution. The equation of the given line can be rewritten as $y=\frac{1}{4} x+5$, so its slope is $\frac{1}{4}$. Parallel lines have equal slopes, thus an equation of the required line, using the point-slope form

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

can be written as $y+3=\frac{1}{4}(x-2)$. This equation can be simplified to $y=\frac{1}{4} x-\frac{7}{2}$.
3. (MH 11-12 1997) Which of the following statements describes the graph of $f(x)=x^{2}-18 x-1$?
(a) parabola with vertex $(-9,242)$
(b) parabola with vertex $(9,-82)$
(c) parabola with vertex $(0,0)$
(d) not a parabola
(e) None of the above

Solution. Since

$$
\begin{aligned}
f(x) & =x^{2}-18 x-1 \\
& =x^{2}-18 x+81-82 \\
& =(x-9)^{2}-82,
\end{aligned}
$$

its graph is a parabola with vertex $(9,-82)$.
4. (MH 11-12 2000) The graph of an equation $x^{2}+y^{2}+4 y=14 x+11$ is
(a) a circle
(b) a point
(c) an ellipse
(d) a parabola
(e) None of the above

Solution. The given equation can be rewritten as $x^{2}-14 x+y^{2}+4 y=11$ $x^{2}-14 x+49+y^{2}+4 y+4=11+49+4$ $(x-7)^{2}+(y+2)^{2}=8^{2}$
This is an equation of a circle.
5. (MH 11-12 2000) The equation of a circle is $x^{2}+y^{2}+8 x-2 y+15=0$.
(a) The center is $(-4,1)$ and the radius is $\sqrt{2}$.
(b) The center is $(7,-2)$ and the radius is 8 .
(c) The center is $(4,3)$ and the radius is $\sqrt{5}$.
(d) The center is $(-7,1)$ and the radius is 9 .
(e) None of the above

Solution. The given equation can be rewritten as

$$
\begin{aligned}
& x^{2}+8 x+y^{2}-2 y=-15 \\
& x^{2}+8 x+16+y^{2}-2 y+1=-15+16+1 \\
& (x+4)^{2}+(y-1)^{2}=2 \\
& (x-(-4))^{2}+(y-1)^{2}=(\sqrt{2})^{2}
\end{aligned}
$$

This is an equation of a circle with center at $(-4,1)$ and radius $\sqrt{2}$.
6. (MH 9-10 2002) The x-intercept of $3 y-3 x-8=0$ is
(a) $\frac{8}{3}$
(b) $\frac{3}{8}$
(c) $\frac{-8}{3}$
(d) $\frac{-3}{8}$

Solution. When $y=0,-3 x-8=0$. Solving for x gives $x=\frac{-8}{3}$.
7. (MH 9-10 2005) The point (a, b) is reflected over the y-axis to the point (c, d) which is reflected over the x-axis to the point (e, f). What is $a b-e f$?
(a) 2
(b) $2 a b$
(c) 0
(d) none of the above

Solution. When a point is reflected over the y-axis, its x-coordinate changes sign and its y-coordinate does not change. So $c=-a$ and $d=b$. When a point is reflected over the x-axis, its x-coordinate does not change and its y-coordinate changes sign. So $e=c=-a$ and $f=-d=-b$.

Then $a b-e f=a b-(-a)(-b)=a b-a b=0$.
8. (MH 11-12 2006) Three vertices of parallelogram $A B C D$ are $A(-1,1), B(4,5)$, and $C(3,1)$. Find the coordinates of the fourth vertex D.
(a) $(-3,-4)$
(b) $(-2,-3)$
(c) $(1,1)$
(d) $(7,0)$
(e) None of the above

Solution 1. The center of the parallelogram is the midpoint of its diagonal $A C$, i.e. $\left(\frac{-1+3}{2}, \frac{1+1}{2}\right)=$ $(1,1)$. Let (x, y) be the coordinates of point D. Since $(1,1)$ is also the midpoint of diagonal $B C$, $\left(\frac{4+x}{2}, \frac{5+y}{2}\right)=(1,1)$. So $\frac{4+x}{2}=1$ and $\frac{5+y}{2}=1$. Therefore $x=-2$ and $y=-3$.
Solution 2. Draw a picture:

9. (MH 9-10 2005) A man travels 2 miles north, 2 miles east, one mile south, one mile west, 3 miles north, and 3 miles east. How far is he from the starting point?
(a) $2 \sqrt{4}$ miles
(b) 6 miles
(c) $4 \sqrt{2}$ miles
(d) none of the above

Solution. Draw a picture:

We see that the man is 4 miles north and 4 miles east of the starting point. The distance is $\sqrt{4^{2}+4^{2}}=$ $\sqrt{32}=4 \sqrt{2}$ miles.
10. (MH 11-12 2008) A line through the points $(m,-9)$ and $(7, m)$ has slope m. What is the value of m ?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

Solution. Using the slope formula, we have $\frac{m+9}{7-m}=m$. Then

$$
\begin{aligned}
& m+9=m(7-m) \\
& m+9=7 m-m^{2} \\
& m^{2}-6 m+9=0 \\
& (m-3)^{2}=0 \\
& m=3 .
\end{aligned}
$$

11. (MH 11-12 2005) Determine the point(s) of intersection (if any) of the line $x+y=2$ with the curve defined by $x^{2}-y^{2}=4$.
(a) The line does not intersect the curve.
(b) The line intersects the curve at the two points: $(2,0)$ and $(0,-2)$.
(c) The line intersects the curve at the two points: $(-2,0)$ and $(2,0)$.
(d) The line intersects the curve at the one point: $(2,0)$.
(e) None of the above.

Solution. Solving the equation $x+y=2$ for y and substituting into the second equation, we have $y=2-x$
$x^{2}-(2-x)^{2}=4$
$x^{2}-\left(4-4 x+x^{2}\right)=4$
$x^{2}-4+4 x-x^{2}=4$
$4 x=8$
$x=2$
$y=0$
So there is only one intersection point: $(2,0)$.
12. (MH 11-12 2005) Given a line segment with endpoints $(-3,4)$ and $(-12,16)$, determine the coordinates of a point on the line whose distance from the right endpoint is one-third the length of the line segment.
(a) $(2,9)$
(b) $(-3+\sqrt{41}, 4+\sqrt{41})$
(c) $(-6,8)$
(d) $(5,-20 / 3)$
(e) None of the above

Solution. Let (x, y) be the coordinates of the point we are looking for. Then x is between -12 and -3 and such that the distance between x and -3 is one-third of the distance between -12 and -3 . So $x=-6$. Similarly for y : it is between 4 and 16 such that the distance between y and 4 is one-third of the distance between 4 and 16 . So $y=8$. Thus the answer is $(-6,8)$.

13. (MH 11-12 2000) If the function $f(x)=a x^{2}+3 x-8$ has a minimum value at $x=-2$, then
(a) $a=5$
(b) $a=\frac{7}{9}$
(c) $a=\frac{3}{4}$
(d) $a=12$
(e) None of the above

Solution. In general, a quadratic function $f(x)=a x^{2}+b x+c$ has a minimum/maximum value at $x=-\frac{b}{2 a}$. So in this case we have $-\frac{3}{2 a}=-2$. Then $3=4 a$, so $a=\frac{3}{4}$.
14. (MH 11-12 2000) What is the oblique asymptote of $f(x)=\frac{3 x^{2}-7 x+2}{x-2}$?
(a) $y=3 x+1$
(b) $y=2 x+1$
(c) $y=3 x-2$
(d) $y=3 x-1$
(e) None of the above

Solution. Factoring the numerator, we get $f(x)=\frac{3 x^{2}-7 x+2}{x-2}=\frac{(x-2)(3 x-1)}{x-2}=3 x-1$ when $x \neq 2$. So the graph of $f(x)$ is the line $y=3 x-1$ except the point at $x=2$ (the function is undefined at $x=2$). Its oblique asymptote is $y=3 x-1$.
15. (MH 11-12 2005) Determine the equation of the circle centered at $(-1,1)$ and tangent to the line $y=5$.
(a) $(x-1)^{2}+(y+1)^{2}=16$
(b) $(x-1)^{2}+(y+1)^{2}=25$
(c) $(x-1)^{2}+(y+1)^{2}=36$
(d) $(x+1)^{2}+(y-1)^{2}=16$
(e) $(x+1)^{2}+(y-1)^{2}=36$

Solution. Since the y-coordinate of the center is 1 and the circle is tangent to the line $y=5$, its radius is 4 (the distance between the center and the tangent line). Then its equation is $(x+1)^{2}+(y-1)^{2}=16$.
16. (MH 11-12 2005) Which of the following is the equation of a parabola with a maximum at $(-1,2)$ and passing through $(2,-1)$?
(a) $(y-2)=-\frac{1}{3}(x+1)^{2}$
(b) $(y+2)=(x-1)^{2}$
(c) $(y+2)=-\frac{1}{3}(x+1)^{2}$
(d) $(y-2)=-3(x+1)^{2}$
(e) $(y-2)=3(x+1)^{2}$

Solution. A parabola with a maximum at $(-1,2)$ has equation $y-2=a(x+1)^{2}$. Since it must pass through $(2,-1)$, it follows that $-1-2=a(2+1)^{2}$. Then $-3=9 a$, so $a=-\frac{1}{3}$. Thus its equation is $y-2=-\frac{1}{3}(x+1)^{2}$.
17. (MH 11-12 1997) The graph of $y^{2}=2 x^{2}+5 x-3$ is:
(a) symmetric about the y-axis
(b) symmetric about the x-axis
(c) symmetric about the origin
(d) is not symmetric about any line
(e) None of the above

Solution. Since $y^{2}=2 x^{2}+5 x-3$ is equivalent to $(-y)^{2}=2 x^{2}+5 x-3$, for every point (x, y) that satisfies the equation, the point $(x,-y)$ also satisfies the equation, and vice versa. Therefore the graph is symmetric about the x-axis. (However, $y^{2}=2 x^{2}+5 x-3$ is not equivalent to $y^{2}=2(-x)^{2}+5(-x)-3$, so the graph is not symmetric about the y-axis. Also, $y^{2}=2 x^{2}+5 x-3$ is not equivalent to $(-y) 2=$ $2(-x)^{2}+5(-x)-3$, so the graph is not symmetric about the origin.)
18. (LF 9-12 2000) The slope of the line that goes through the point $(2,0)$ and is tangent to the circle $x^{2}+y^{2}=1$ in the first quadrant is
(a) $\frac{-1}{3}$
(b) $\frac{-1}{2}$
(c) $\frac{-1}{\sqrt{3}}$
(d) $\frac{-1}{\sqrt{2}}$
(e) None of these

Solution 1. Let (a, b) be the common point of the line and the circle. Then the slope of the line is $m_{1}=\frac{b-0}{a-2}=\frac{b}{a-2}$. The slope of the radius drawn to the point (a, b) is $m_{2}=\frac{b}{a}$. Since the line and the radius must be perpendicular, $m_{1} \cdot m_{2}=-1$. Thus $\frac{b}{a-2} \cdot \frac{b}{a}=-1$, so $b^{2}=-a(a-2)$.

Also, the point (a, b) satisfies the equation of the circle, so $a^{2}+b^{2}=1$. Substituting $b^{2}=-a(a-2)$ into this equation gives
$a^{2}-a(a-2)=1$
$a^{2}-a^{2}+2 a=1$
$2 a=1$
$a=\frac{1}{2}$.
Then $b^{2}=-\frac{1}{2} \cdot\left(-\frac{3}{2}\right)=\frac{3}{4}$, so $b=\frac{\sqrt{3}}{2}$.
Therefore the slope of the line is $m_{1}=\frac{b}{a-2}=\frac{\frac{\sqrt{3}}{2}}{-\frac{3}{2}}=\frac{-1}{\sqrt{3}}$.
Solution 2. Since the tangent line $(A C)$ and the radius $(O B)$ are perpendicular, $O A B$ is a right triangle.

Since $|O B|=1$ and $|O A|=2, \angle A=30^{\circ}$. So $O A C$ is also a right triangle in which $\angle A=30^{\circ}$ and $|O A|=2$, therefore $|O C|=\frac{|O A|}{\sqrt{3}}=\frac{2}{\sqrt{3}}$. The slope of the line $A C$ is then $-\frac{\frac{2}{\sqrt{3}}}{2}=\frac{-1}{\sqrt{3}}$.
Solution 3. Let the slope of the tangent line be m. Then its equation (using the point-slope form) is $y=m(x-2)$. The system

$$
\left\{\begin{array}{l}
y=m(x-2) \\
x^{2}+y^{2}=1
\end{array}\right.
$$

must have only one solution. Substituting the y-value from first equation into the second, we get
$x^{2}+(m(x-2))^{2}=1$
$x^{2}+m^{2} x^{2}-4 m^{2} x+4 m^{2}=1$
$\left(m^{2}+1\right) x^{2}-4 m^{2} x+\left(4 m^{2}-1\right)=0$.
The quadratic equation has exactly one solution when the discriminant is 0 :

$$
\begin{aligned}
& \left(-4 m^{2}\right)^{2}-4\left(m^{2}+1\right)\left(4 m^{2}-1\right)=0 \\
& 16 m^{4}-4\left(4 m^{4}+3 m^{2}-1\right)=0 \\
& 16 m^{4}-16 m^{4}-12 m^{2}+4=0 \\
& -12 m^{2}+4=0 \\
& -3 m^{2}+1=0 \\
& 3 m^{2}=1 \\
& m= \pm \frac{1}{\sqrt{3}} .
\end{aligned}
$$

However, if $m=\frac{1}{\sqrt{3}}$, then the common point of the line and the circle is in quadrant IV. So the answer is $m=-\frac{1}{\sqrt{3}}$.
19. (MH 11-12 2008) The graphs of the lines $y=x-2$ and $y=m x+3$ intersect at a point whose x coordinate and y-coordinate are both positive if and only if
(a) $m<1$
(b) $m=1$
(c) $-\frac{3}{2}<m<0$
(d) $-\frac{3}{2}<m$
(e) $-\frac{3}{2}<m<1$

Solution. To find the intersection points, we set the right hand sides of the two equations equal: $x-2=m x+3$, so $(m-1) x=-5$, thus $x=\frac{-5}{m-1}$. Then $y=x-2=\frac{-5}{m-1}-2=\frac{-5-2 m+2}{m-1}=\frac{-2 m-3}{m-1}$. Now, $x>0$ if $\frac{-5}{m-1}>0$, thus $m-1<0$, so $m<1$. Also, $y>0$ if $\frac{-2 m-3}{m-1}>0$, thus $-2 m-3<0$, so $m>-\frac{3}{2}$. Thus the answer is $-\frac{3}{2}<m<1$.
20. (LF 9-12 2004) Among all real number pairs (x, y) that satisfy $x^{2}+x+y^{2}+y=1$, find the largest possible value of $x+y$.
(a) $\sqrt{2}-1$
(b) 1
(c) $\sqrt{3}-1$
(d) $\sqrt{3}$
(e) None of these

Solution. The equation $x^{2}+x+y^{2}+y=1$ can be rewritten as $x^{2}+x+\frac{1}{4}+y^{2}+y+\frac{1}{4}=\frac{3}{2}$
$\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^{2}$.
This is an equation of the circle with center at $\left(-\frac{1}{2},-\frac{1}{2}\right)$ and radius $\frac{\sqrt{3}}{\sqrt{2}}$.
The lines $x+y=c$ (where c is a constant) have slope -1 .

The line with the largest possible value of c that has a common point with the circle is the tangent line l. The common point has coordinates $\left(-\frac{1}{2}+\frac{r}{\sqrt{2}},-\frac{1}{2}+\frac{r}{\sqrt{2}}\right)=\left(-\frac{1}{2}+\frac{\sqrt{3}}{2},-\frac{1}{2}+\frac{\sqrt{3}}{2}\right)$, so the equation of the line is $x+y=-1+\sqrt{3}$.
21. (MH 11-12 2000) For the ellipse $4 x^{2}+9 y^{2}-16 x+18 y-11=0$
(a) The center is $(2,-1)$ and the foci are $(2 \pm \sqrt{5},-1)$
(b) The center is $(4,1)$ and the foci are $(2 \pm \sqrt{5},-1)$
(c) The center is $(2,-1)$ and the foci are $(3 \pm \sqrt{6},-1)$
(d) The center is $(4,9)$ and the foci are $(3 \pm \sqrt{6},-1)$
(e) None of the above

Solution. The equation can be rewritten as

$$
\begin{aligned}
& 4 x^{2}-16 x+9 y^{2}+18 y=11 \\
& 4 x^{2}-16 x+16+9 y^{2}+18 y+9=11+16+9 \\
& 4(x-2)^{2}+9(y+1)^{2}=36 \\
& \frac{(x-2)^{2}}{3^{2}}+\frac{(y+1)^{2}}{2^{2}}=1
\end{aligned}
$$

So the center is $(2,-1)$ and principal axes are $a=3$ and $b=2$. Therefore the distance between the center and each of the foci is $c=\sqrt{a^{2}-b^{2}}=\sqrt{5}$. Then the foci are $(2 \pm \sqrt{5},-1)$.
22. (LF 9-12 2004) Suppose the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ can be inscribed in the diamond shape whose vertices are $(1,0),(0,1),(-1,0),(0,-1)$. Then $a^{2}+b^{2}=$
(a) 1
(b) $a^{2} b^{2}$
(c) $\frac{1}{a b}$
(d) $a^{4} b^{4}$
(e) None of the above

Solution. The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is inscribed in the square with vertices $(1,0),(0,1),(-1,0)$, and $(0,-1)$ if and only if the ellipse and the line that passes through $(1,0)$ and $(0,1)$ have exactly one common point. This line has equation $y=1-x$, and substituting this into the equation of the ellipse we get:

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{(1-x)^{2}}{b^{2}}=1 \\
& b^{2} x^{2}+a^{2}(1-x)^{2}=a^{2} b^{2} \\
& \left(a^{2}+b^{2}\right) x^{2}-2 a^{2} x+\left(a^{2}-a^{2} b^{2}\right)=0
\end{aligned}
$$

This quadratic equation has exactly one root if the discriminant is 0 :

$$
\begin{aligned}
& \left(-2 a^{2}\right)^{2}-4\left(a^{2}+b^{2}\right)\left(a^{2}-a^{2} b^{2}\right)=0 \\
& 4 a^{4}-4\left(a^{4}-a^{4} b^{2}+a^{2} b^{2}-a^{2} b^{4}\right)=0 \\
& 4 a^{4}-4 a^{4}+4 a^{4} b^{2}-4 a^{2} b^{2}+4 a^{2} b^{4}=0 \\
& 4 a^{4} b^{2}-4 a^{2} b^{2}+4 a^{2} b^{4}=0 \\
& a^{4} b^{2}-a^{2} b^{2}+a^{2} b^{4}=0 \\
& a^{2} b^{2}\left(a^{2}-1+b^{2}\right)=0
\end{aligned}
$$

This equation implies that either $a=0$ (which is impossible) or $b=0$ (which is also impossible) or $a^{2}+b^{2}-1=0$, so $a^{2}+b^{2}=1$.
23. (MH 11-12 2005) Determine the equation in rectangular coordinates of $\cos \theta+\sin \theta=1$.
(a) $x=0$
(b) $y=0$
(c) $x y=0$
(d) The equation cannot be converted to rectangular coordinates
(e) None of the above

Solution. Multiplying both sides of the equation by r we get:
$r \cos \theta+r \sin \theta=r$
$x+y=\sqrt{x^{2}+y^{2}}$
$(x+y)^{2}=x^{2}+y^{2}$
$x^{2}+2 x y+y^{2}=x^{2}+y^{2}$
$2 x y=0$
$x y=0$
$x=0$ or $y=0$
However, we must have $x \geq 0$ and $y \geq 0$ in order for $x+y \geq 0$ to hold (it must hold because $\sqrt{x^{2}+y^{2}} \geq$ 0). So we get the system

$$
\left\{\begin{array}{l}
x y=0 \\
x \geq 0 \\
y \geq 0
\end{array}\right.
$$

(the solution set consists of all points on the positive half of the x-axis and all points on the positive half of the y-axis. This set cannot be described by a single equation in rectangular coordinates.)
24. (MH 11-12 2000) Convert the polar equation $r-r \sin \theta=2$ to a rectangular equation.
(a) $x^{2}-4 y+4=0$
(b) $x^{2}+4 y+4=0$
(c) $x^{2}-2 y-2=0$
(d) $x^{2}-4 y-4=0$
(e) None of the above

Solution. The equation can be rewritten as
$r=r \sin \theta+2$
$r^{2}=(r \sin \theta+2)^{2}$
$x^{2}+y^{2}=(r \sin \theta)^{2}+4 r \sin \theta+4$
$x^{2}+y^{2}=y^{2}+4 y+4$
$x^{2}=4 y+4$
$x^{2}-4 y-4=0$
25. (MH 11-12 2005) Planet M orbits around its sun, S, in an elliptical orbit with the sun at one focus. When M is closest to S, it is 2 million miles away. When M is farthest from S, it is 18 million miles away. Determine the equation of motion of planet M around its sun S, using S as the center of the coordinate plane and assuming the other focus lies on the positive x-axis.
(a) $\frac{x^{2}}{100}+\frac{y^{2}}{36}=1$
(b) $\frac{x^{2}}{100}+\frac{y^{2}}{64}=1$
(c) $\frac{(x-6)^{2}}{100}+\frac{y^{2}}{64}=1$
(d) $\frac{(x-8)^{2}}{100}+\frac{y^{2}}{36}=1$
(e) $\frac{(x-8)^{2}}{100}+\frac{(y-6)^{2}}{36}=1$

Solution. Let a and b be principal axes and let c be the distance between the center of the ellipse
and each of its foci. Then $2 a=2+18=20$, so $a=10$. Also, $2 c=18-2=16$, so $c=8$. Then $b=\sqrt{a^{2}-c^{2}}=\sqrt{100-64}=6$. If one of the foci is the origin of the coordinate plane and the other focus lies on the positive x-axis, then the center of the ellipse is at $(c, 0)$, i.e. $(8,0)$. The equation of the ellipse is then

$$
\begin{aligned}
& \frac{(x-8)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{(x-8)^{2}}{100}+\frac{y^{2}}{36}=1
\end{aligned}
$$

