Hoover High School Math League

March 25-26, 2009

Coordinate Geometry: Solutions

- 1. (MH 11-12 1997) Find the distance between (2, -1) and (7, 4).
 - (a) 6
 - (b) $\sqrt{50}$
 - (c) $\sqrt{130}$
 - (d) 12
 - (e) None of the above

Solution. Using the distance formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},$$

we have $d = \sqrt{(7-2)^2 + (4+1)^2} = \sqrt{50}$.

- 2. (MH 11-12 2000) The equation of the line parallel to the line 4y x = 20 and containing the point (2, -3) is
 - (a) y = 4x 7
 - (b) $y = \frac{1}{4}x \frac{7}{2}$

(c)
$$y = \frac{3}{4}x + \frac{7}{2}$$

(d)
$$y = -4x + 5$$

(e) None of the above

Solution. The equation of the given line can be rewritten as $y = \frac{1}{4}x + 5$, so its slope is $\frac{1}{4}$. Parallel lines have equal slopes, thus an equation of the required line, using the point-slope form

$$y - y_0 = m(x - x_0)$$

can be written as $y + 3 = \frac{1}{4}(x - 2)$. This equation can be simplified to $y = \frac{1}{4}x - \frac{7}{2}$.

- 3. (MH 11-12 1997) Which of the following statements describes the graph of $f(x) = x^2 18x 1?$
 - (a) parabola with vertex (-9, 242)
 - (b) parabola with vertex (9, -82)
 - (c) parabola with vertex (0,0)
 - (d) not a parabola
 - (e) None of the above

Solution. Since

$$f(x) = x^{2} - 18x - 1$$

= x² - 18x + 81 - 82
= (x - 9)^{2} - 82,

its graph is a parabola with vertex (9, -82).

- 4. (MH 11-12 2000) The graph of an equation $x^2 + y^2 + 4y = 14x + 11$ is
 - (a) a circle
 - (b) a point
 - (c) an ellipse
 - (d) a parabola
 - (e) None of the above

Solution. The given equation can be rewritten as

 $x^{2} - 14x + y^{2} + 4y = 11$ $x^{2} - 14x + 49 + y^{2} + 4y + 4 = 11 + 49 + 4$ $(x - 7)^{2} + (y + 2)^{2} = 8^{2}$ This is an exercise of a single

This is an equation of a circle.

- 5. (MH 11-12 2000) The equation of a circle is $x^2 + y^2 + 8x 2y + 15 = 0$.
 - (a) The center is (-4, 1) and the radius is $\sqrt{2}$.
 - (b) The center is (7, -2) and the radius is 8.
 - (c) The center is (4,3) and the radius is $\sqrt{5}$.
 - (d) The center is (-7, 1) and the radius is 9.
 - (e) None of the above

Solution. The given equation can be rewritten as

 $x^{2} + 8x + y^{2} - 2y = -15$ $x^{2} + 8x + 16 + y^{2} - 2y + 1 = -15 + 16 + 1$ $(x + 4)^{2} + (y - 1)^{2} = 2$ $(x - (-4))^{2} + (y - 1)^{2} = (\sqrt{2})^{2}$

This is an equation of a circle with center at (-4, 1) and radius $\sqrt{2}$.

- 6. (MH 9-10 2002) The *x*-intercept of 3y 3x 8 = 0 is
 - (a) $\frac{8}{3}$
 - (b) $\frac{3}{8}$
 - (c) $\frac{-8}{3}$
 - (d) $\frac{-3}{8}$

Solution. When y = 0, -3x - 8 = 0. Solving for x gives $x = \frac{-8}{3}$.

- 7. (MH 9-10 2005) The point (a,b) is reflected over the *y*-axis to the point (c,d) which is reflected over the *x*-axis to the point (e, f). What is ab ef?
 - (a) 2
 - (b) 2*ab*
 - (c) 0
 - (d) none of the above

Solution. When a point is reflected over the *y*-axis, its *x*-coordinate changes sign and its *y*-coordinate does not change. So c = -a and d = b. When a point is reflected over the *x*-axis, its *x*-coordinate does not change and its *y*-coordinate changes sign. So e = c = -a and f = -d = -b.

Then ab - ef = ab - (-a)(-b) = ab - ab = 0.

- 8. (MH 11-12 2006) Three vertices of parallelogram *ABCD* are A(-1,1), B(4,5), and C(3,1). Find the coordinates of the fourth vertex *D*.
 - (a) (-3, -4)
 - (b) (-2, -3)
 - (c) (1,1)
 - (d) (7,0)
 - (e) None of the above

Solution 1. The center of the parallelogram is the midpoint of its diagonal *AC*, i.e. $\left(\frac{-1+3}{2}, \frac{1+1}{2}\right) = (1,1)$. Let (x,y) be the coordinates of point *D*. Since (1,1) is also the midpoint of diagonal *BC*, $\left(\frac{4+x}{2}, \frac{5+y}{2}\right) = (1,1)$. So $\frac{4+x}{2} = 1$ and $\frac{5+y}{2} = 1$. Therefore x = -2 and y = -3. **Solution 2.** Draw a picture:

- 9. (MH 9-10 2005) A man travels 2 miles north, 2 miles east, one mile south, one mile west, 3 miles north, and 3 miles east. How far is he from the starting point?
 - (a) $2\sqrt{4}$ miles
 - (b) 6 miles
 - (c) $4\sqrt{2}$ miles
 - (d) none of the above

Solution. Draw a picture:

We see that the man is 4 miles north and 4 miles east of the starting point. The distance is $\sqrt{4^2 + 4^2} = \sqrt{32} = 4\sqrt{2}$ miles.

10. (MH 11-12 2008) A line through the points (m, -9) and (7, m) has slope m. What is the value of m?

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5

Solution. Using the slope formula, we have $\frac{m+9}{7-m} = m$. Then m+9 = m(7-m) $m+9 = 7m - m^2$ $m^2 - 6m + 9 = 0$ $(m-3)^2 = 0$

- m = 3.
- 11. (MH 11-12 2005) Determine the point(s) of intersection (if any) of the line x + y = 2 with the curve defined by $x^2 y^2 = 4$.
 - (a) The line does not intersect the curve.
 - (b) The line intersects the curve at the two points: (2,0) and (0,-2).
 - (c) The line intersects the curve at the two points: (-2,0) and (2,0).
 - (d) The line intersects the curve at the one point: (2,0).
 - (e) None of the above.

Solution. Solving the equation x + y = 2 for y and substituting into the second equation, we have

y = 2 - x $x^{2} - (2 - x)^{2} = 4$ $x^{2} - (4 - 4x + x^{2}) = 4$ $x^{2} - 4 + 4x - x^{2} = 4$ 4x = 8 x = 2y = 0

So there is only one intersection point: (2,0).

12. (MH 11-12 2005) Given a line segment with endpoints (-3,4) and (-12,16), determine the coordinates of a point on the line whose distance from the right endpoint is one-third the length of the line segment.

- (a) (2,9) (b) $(-3+\sqrt{41},4+\sqrt{41})$
- (c) (-6,8)
- (d) (5, -20/3)
- (e) None of the above

Solution. Let (x, y) be the coordinates of the point we are looking for. Then x is between -12 and -3 and such that the distance between x and -3 is one-third of the distance between -12 and -3. So x = -6. Similarly for y: it is between 4 and 16 such that the distance between y and 4 is one-third of the distance between 4 and 16. So y = 8. Thus the answer is (-6, 8).

13. (MH 11-12 2000) If the function $f(x) = ax^2 + 3x - 8$ has a minimum value at x = -2, then

- (a) a = 5
- (b) $a = \frac{7}{9}$
- (c) $a = \frac{3}{4}$
- (d) a = 12
- (e) None of the above

Solution. In general, a quadratic function $f(x) = ax^2 + bx + c$ has a minimum/maximum value at $x = -\frac{b}{2a}$. So in this case we have $-\frac{3}{2a} = -2$. Then 3 = 4a, so $a = \frac{3}{4}$.

14. (MH 11-12 2000) What is the oblique asymptote of $f(x) = \frac{3x^2 - 7x + 2}{x - 2}$?

- (a) y = 3x + 1
- (b) y = 2x + 1
- (c) y = 3x 2
- (d) y = 3x 1
- (e) None of the above

Solution. Factoring the numerator, we get $f(x) = \frac{3x^2 - 7x + 2}{x - 2} = \frac{(x - 2)(3x - 1)}{x - 2} = 3x - 1$ when $x \neq 2$. So the graph of f(x) is the line y = 3x - 1 except the point at x = 2 (the function is undefined at x = 2). Its oblique asymptote is y = 3x - 1.

15. (MH 11-12 2005) Determine the equation of the circle centered at (-1, 1) and tangent to the line y = 5.

(a) $(x-1)^2 + (y+1)^2 = 16$ (b) $(x-1)^2 + (y+1)^2 = 25$ (c) $(x-1)^2 + (y+1)^2 = 36$ (d) $(x+1)^2 + (y-1)^2 = 16$ (e) $(x+1)^2 + (y-1)^2 = 36$

Solution. Since the *y*-coordinate of the center is 1 and the circle is tangent to the line y = 5, its radius is 4 (the distance between the center and the tangent line). Then its equation is $(x+1)^2 + (y-1)^2 = 16$.

- 16. (MH 11-12 2005) Which of the following is the equation of a parabola with a maximum at (-1,2) and passing through (2,-1)?
 - (a) $(y-2) = -\frac{1}{3}(x+1)^2$
 - (b) $(y+2) = (x-1)^2$
 - (c) $(y+2) = -\frac{1}{3}(x+1)^2$
 - (d) $(y-2) = -3(x+1)^2$

(e)
$$(y-2) = 3(x+1)^2$$

Solution. A parabola with a maximum at (-1,2) has equation $y-2 = a(x+1)^2$. Since it must pass through (2,-1), it follows that $-1-2 = a(2+1)^2$. Then -3 = 9a, so $a = -\frac{1}{3}$. Thus its equation is $y-2 = -\frac{1}{3}(x+1)^2$.

- 17. (MH 11-12 1997) The graph of $y^2 = 2x^2 + 5x 3$ is:
 - (a) symmetric about the y-axis
 - (b) symmetric about the *x*-axis
 - (c) symmetric about the origin
 - (d) is not symmetric about any line
 - (e) None of the above

Solution. Since $y^2 = 2x^2 + 5x - 3$ is equivalent to $(-y)^2 = 2x^2 + 5x - 3$, for every point (x, y) that satisfies the equation, the point (x, -y) also satisfies the equation, and vice versa. Therefore the graph is symmetric about the *x*-axis. (However, $y^2 = 2x^2 + 5x - 3$ is not equivalent to $y^2 = 2(-x)^2 + 5(-x) - 3$, so the graph is not symmetric about the *y*-axis. Also, $y^2 = 2x^2 + 5x - 3$ is not equivalent to $(-y)^2 = 2(-x)^2 + 5(-x) - 3$, so the graph is not symmetric about the origin.)

- 18. (LF 9-12 2000) The slope of the line that goes through the point (2,0) and is tangent to the circle $x^2 + y^2 = 1$ in the first quadrant is
 - (a) $\frac{-1}{3}$
 - (b) $\frac{-1}{2}$
 - (c) $\frac{-1}{\sqrt{3}}$
 - (d) $\frac{-1}{\sqrt{2}}$
 - (e) None of these

Solution 1. Let (a,b) be the common point of the line and the circle. Then the slope of the line is $m_1 = \frac{b-0}{a-2} = \frac{b}{a-2}$. The slope of the radius drawn to the point (a,b) is $m_2 = \frac{b}{a}$. Since the line and the radius must be perpendicular, $m_1 \cdot m_2 = -1$. Thus $\frac{b}{a-2} \cdot \frac{b}{a} = -1$, so $b^2 = -a(a-2)$.

Also, the point (a,b) satisfies the equation of the circle, so $a^2 + b^2 = 1$. Substituting $b^2 = -a(a-2)$ into this equation gives

 $a^{2} - a(a-2) = 1$ $a^{2} - a^{2} + 2a = 1$ 2a = 1 $a = \frac{1}{2}.$ Then $b^{2} = -\frac{1}{2} \cdot \left(-\frac{3}{2}\right) = \frac{3}{4}$, so $b = \frac{\sqrt{3}}{2}$.

Therefore the slope of the line is $m_1 = \frac{b}{a-2} = \frac{\frac{\sqrt{3}}{2}}{-\frac{3}{2}} = \frac{-1}{\sqrt{3}}.$

Solution 2. Since the tangent line (AC) and the radius (OB) are perpendicular, OAB is a right triangle.

Since |OB| = 1 and |OA| = 2, $\angle A = 30^{\circ}$. So *OAC* is also a right triangle in which $\angle A = 30^{\circ}$ and |OA| = 2, therefore $|OC| = \frac{|OA|}{\sqrt{3}} = \frac{2}{\sqrt{3}}$. The slope of the line *AC* is then $-\frac{\frac{2}{\sqrt{3}}}{2} = \frac{-1}{\sqrt{3}}$. **Solution 3.** Let the slope of the tangent line be *m*. Then its equation (using the point-slope form) is y = m(x-2). The system

$$\begin{cases} y = m(x-2) \\ x^2 + y^2 = 1 \end{cases}$$

must have only one solution. Substituting the *y*-value from first equation into the second, we get $x^2 + (m(x-2))^2 = 1$ $x^2 + m^2x^2 - 4m^2x + 4m^2 = 1$ $(m^2 + 1)x^2 - 4m^2x + (4m^2 - 1) = 0$. The quadratic equation has exactly one solution when the discriminant is 0: $(-4m^2)^2 - 4(m^2 + 1)(4m^2 - 1) = 0$ $16m^4 - 4(4m^4 + 3m^2 - 1) = 0$ $16m^4 - 16m^4 - 12m^2 + 4 = 0$ $-12m^2 + 4 = 0$ $-3m^2 + 1 = 0$ $3m^2 = 1$ $m = \pm \frac{1}{\sqrt{3}}$. However, if $m = \frac{1}{\sqrt{3}}$, then the common point of the line and the circle is in quadrant IV. So the answer is $m = -\frac{1}{\sqrt{3}}$.

19. (MH 11-12 2008) The graphs of the lines y = x - 2 and y = mx + 3 intersect at a point whose *x*-coordinate and *y*-coordinate are both positive if and only if

(b) m = 1(c) $-\frac{3}{2} < m < 0$ (d) $-\frac{3}{2} < m$ (e) $-\frac{3}{2} < m < 1$

Solution. To find the intersection points, we set the right hand sides of the two equations equal: x - 2 = mx + 3, so (m - 1)x = -5, thus $x = \frac{-5}{m-1}$. Then $y = x - 2 = \frac{-5}{m-1} - 2 = \frac{-5-2m+2}{m-1} = \frac{-2m-3}{m-1}$. Now, x > 0 if $\frac{-5}{m-1} > 0$, thus m - 1 < 0, so m < 1. Also, y > 0 if $\frac{-2m-3}{m-1} > 0$, thus -2m - 3 < 0, so $m > -\frac{3}{2}$. Thus the answer is $-\frac{3}{2} < m < 1$.

- 20. (LF 9-12 2004) Among all real number pairs (x, y) that satisfy $x^2 + x + y^2 + y = 1$, find the largest possible value of x + y.
 - (a) $\sqrt{2} 1$
 - (b) 1
 - (c) $\sqrt{3} 1$
 - (d) $\sqrt{3}$
 - (e) None of these

Solution. The equation $x^2 + x + y^2 + y = 1$ can be rewritten as $x^2 + x + \frac{1}{4} + y^2 + y + \frac{1}{4} = \frac{3}{2}$ $\left(x + \frac{1}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 = \left(\frac{\sqrt{3}}{\sqrt{2}}\right)^2$.

This is an equation of the circle with center at $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ and radius $\frac{\sqrt{3}}{\sqrt{2}}$. The lines x + y = c (where *c* is a constant) have slope -1.

The line with the largest possible value of *c* that has a common point with the circle is the tangent line *l*. The common point has coordinates $\left(-\frac{1}{2} + \frac{r}{\sqrt{2}}, -\frac{1}{2} + \frac{r}{\sqrt{2}}\right) = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}, -\frac{1}{2} + \frac{\sqrt{3}}{2}\right)$, so the equation of the line is $x + y = -1 + \sqrt{3}$.

- 21. (MH 11-12 2000) For the ellipse $4x^2 + 9y^2 16x + 18y 11 = 0$
 - (a) The center is (2, -1) and the foci are $(2 \pm \sqrt{5}, -1)$
 - (b) The center is (4, 1) and the foci are $(2 \pm \sqrt{5}, -1)$
 - (c) The center is (2, -1) and the foci are $(3 \pm \sqrt{6}, -1)$
 - (d) The center is (4,9) and the foci are $(3 \pm \sqrt{6}, -1)$
 - (e) None of the above

Solution. The equation can be rewritten as

 $4x^{2} - 16x + 9y^{2} + 18y = 11$ $4x^{2} - 16x + 16 + 9y^{2} + 18y + 9 = 11 + 16 + 9$ $4x^{2} = 10x^{2} + 10y^{2} + 10y^{$

center and each of the foci is $c = \sqrt{a^2 - b^2} = \sqrt{5}$. Then the foci are $(2 \pm \sqrt{5}, -1)$.

- 22. (LF 9-12 2004) Suppose the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ can be inscribed in the diamond shape whose vertices are (1,0), (0,1), (-1,0), (0,-1). Then $a^2 + b^2 =$
 - (a) 1
 - (b) a^2b^2
 - (c) $\frac{1}{ab}$
 - (d) a^4b^4
 - (e) None of the above

Solution. The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is inscribed in the square with vertices (1,0), (0,1), (-1,0), and (0,-1) if and only if the ellipse and the line that passes through (1,0) and (0,1) have exactly one common point. This line has equation y = 1 - x, and substituting this into the equation of the ellipse we get:

$$\frac{x^2}{a^2} + \frac{(1-x)^2}{b^2} = 1$$

$$b^2x^2 + a^2(1-x)^2 = a^2b^2$$

$$(a^2 + b^2)x^2 - 2a^2x + (a^2 - a^2b^2) = 0.$$

This quadratic equation has exactly one root if the discriminant is 0:

$$(-2a^2)^2 - 4(a^2 + b^2)(a^2 - a^2b^2) = 0$$

$$4a^4 - 4(a^4 - a^4b^2 + a^2b^2 - a^2b^4) = 0$$

$$4a^4 - 4a^4 + 4a^4b^2 - 4a^2b^2 + 4a^2b^4 = 0$$

$$4a^4b^2 - 4a^2b^2 + 4a^2b^4 = 0$$

$$a^4b^2 - a^2b^2 + a^2b^4 = 0$$

$$a^2b^2(a^2 - 1 + b^2) = 0.$$

This equation implies that either $a = 0$ (which is impossible) or $b = 0$

Insequation implies that either a = 0 (which is impossible) or b = 0 (which is also impossible) or $a^2 + b^2 - 1 = 0$, so $a^2 + b^2 = 1$.

23. (MH 11-12 2005) Determine the equation in rectangular coordinates of $\cos \theta + \sin \theta = 1$.

- (a) x = 0
- (b) y = 0
- (c) xy = 0

- (d) The equation cannot be converted to rectangular coordinates
- (e) None of the above

Solution. Multiplying both sides of the equation by r we get:

 $r\cos\theta + r\sin\theta = r$ $x + y = \sqrt{x^2 + y^2}$ $(x + y)^2 = x^2 + y^2$ $x^2 + 2xy + y^2 = x^2 + y^2$ 2xy = 0 xy = 0 x = 0 or y = 0However, we must have $x \ge 0$ and $y \ge 0$ in order for $x + y \ge 0$ to hold (it must hold because $\sqrt{x^2 + y^2} \ge 0$). So we get the system

$$\begin{cases} xy = 0\\ x \ge 0\\ y \ge 0 \end{cases}$$

(the solution set consists of all points on the positive half of the *x*-axis and all points on the positive half of the *y*-axis. This set cannot be described by a single equation in rectangular coordinates.)

- 24. (MH 11-12 2000) Convert the polar equation $r r \sin \theta = 2$ to a rectangular equation.
 - (a) $x^2 4y + 4 = 0$
 - (b) $x^2 + 4y + 4 = 0$
 - (c) $x^2 2y 2 = 0$
 - (d) $x^2 4y 4 = 0$
 - (e) None of the above

Solution. The equation can be rewritten as

$$r = r\sin\theta + 2$$

$$r^{2} = (r\sin\theta + 2)^{2}$$

$$x^{2} + y^{2} = (r\sin\theta)^{2} + 4r\sin\theta + 4$$

$$x^{2} + y^{2} = y^{2} + 4y + 4$$

$$x^{2} = 4y + 4$$

$$x^{2} - 4y - 4 = 0$$

25. (MH 11-12 2005) Planet M orbits around its sun, S, in an elliptical orbit with the sun at one focus. When M is closest to S, it is 2 million miles away. When M is farthest from S, it is 18 million miles away. Determine the equation of motion of planet M around its sun S, using S as the center of the coordinate plane and assuming the other focus lies on the positive *x*-axis.

(a)
$$\frac{x^2}{100} + \frac{y^2}{36} = 1$$

(b) $\frac{x^2}{100} + \frac{y^2}{64} = 1$
(c) $\frac{(x-6)^2}{100} + \frac{y^2}{64} = 1$
(d) $\frac{(x-8)^2}{100} + \frac{y^2}{36} = 1$
(e) $\frac{(x-8)^2}{100} + \frac{(y-6)^2}{36} = 1$

Solution. Let a and b be principal axes and let c be the distance between the center of the ellipse

and each of its foci. Then 2a = 2 + 18 = 20, so a = 10. Also, 2c = 18 - 2 = 16, so c = 8. Then $b = \sqrt{a^2 - c^2} = \sqrt{100 - 64} = 6$. If one of the foci is the origin of the coordinate plane and the other focus lies on the positive *x*-axis, then the center of the ellipse is at (c, 0), i.e. (8, 0). The equation of the ellipse is then

$$\frac{(x-8)^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$\frac{(x-8)^2}{100} + \frac{y^2}{36} = 1$$