Hoover High School Math League

March 25-26, 2009

Coordinate Geometry: Problems

1. Find the distance between $(2,-1)$ and $(7,4)$.
(a) 6
(b) $\sqrt{50}$
(c) $\sqrt{130}$
(d) 12
(e) None of the above
2. The equation of the line parallel to the line $4 y-x=20$ and containing the point $(2,-3)$ is
(a) $y=4 x-7$
(b) $y=\frac{1}{4} x-\frac{7}{2}$
(c) $y=\frac{3}{4} x+\frac{7}{2}$
(d) $y=-4 x+5$
(e) None of the above
3. Which of the following statements describes the graph of $f(x)=x^{2}-18 x-1$?
(a) parabola with vertex $(-9,242)$
(b) parabola with vertex $(9,-82)$
(c) parabola with vertex $(0,0)$
(d) not a parabola
(e) None of the above
4. The graph of an equation $x^{2}+y^{2}+4 y=14 x+11$ is
(a) a circle
(b) a point
(c) an ellipse
(d) a parabola
(e) None of the above
5. The equation of a circle is $x^{2}+y^{2}+8 x-2 y+15=0$.
(a) The center is $(-4,1)$ and the radius is $\sqrt{2}$.
(b) The center is $(7,-2)$ and the radius is 8 .
(c) The center is $(4,3)$ and the radius is $\sqrt{5}$.
(d) The center is $(-7,1)$ and the radius is 9 .
(e) None of the above
6. The x-intercept of $3 y-3 x-8=0$ is
(a) $\frac{8}{3}$
(b) $\frac{3}{8}$
(c) $\frac{-8}{3}$
(d) $\frac{-3}{8}$
7. The point (a, b) is reflected over the y-axis to the point (c, d) which is reflected over the x-axis to the point (e, f). What is $a b-e f$?
(a) 2
(b) $2 a b$
(c) 0
(d) none of the above
8. Three vertices of parallelogram $A B C D$ are $A(-1,1), B(4,5)$, and $C(3,1)$. Find the coordinates of the fourth vertex D.
(a) $(-3,-4)$
(b) $(-2,-3)$
(c) $(1,1)$
(d) $(7,0)$
(e) None of the above
9. A man travels 2 miles north, 2 miles east, one mile south, one mile west, 3 miles north, and 3 miles east. How far is he from the starting point?
(a) $2 \sqrt{4}$ miles
(b) 6 miles
(c) $4 \sqrt{2}$ miles
(d) none of the above
10. A line through the points $(m,-9)$ and $(7, m)$ has slope m. What is the value of m ?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
11. Determine the point(s) of intersection (if any) of the line $x+y=2$ with the curve defined by $x^{2}-y^{2}=4$.
(a) The line does not intersect the curve.
(b) The line intersects the curve at the two points: $(2,0)$ and $(0,-2)$.
(c) The line intersects the curve at the two points: $(-2,0)$ and $(2,0)$.
(d) The line intersects the curve at the one point: $(2,0)$.
(e) None of the above.
12. Given a line segment with endpoints $(-3,4)$ and $(-12,16)$, determine the coordinates of a point on the line whose distance from the right endpoint is one-third the length of the line segment.
(a) $(2,9)$
(b) $(-3+\sqrt{41}, 4+\sqrt{41})$
(c) $(-6,8)$
(d) $(5,-20 / 3)$
(e) None of the above
13. If the function $f(x)=a x^{2}+3 x-8$ has a minimum value at $x=-2$, then
(a) $a=5$
(b) $a=\frac{7}{9}$
(c) $a=\frac{3}{4}$
(d) $a=12$
(e) None of the above
14. What is the oblique asymptote of $f(x)=\frac{3 x^{2}-7 x+2}{x-2}$?
(a) $y=3 x+1$
(b) $y=2 x+1$
(c) $y=3 x-2$
(d) $y=3 x-1$
(e) None of the above
15. Determine the equation of the circle centered at $(-1,1)$ and tangent to the line $y=5$.
(a) $(x-1)^{2}+(y+1)^{2}=16$
(b) $(x-1)^{2}+(y+1)^{2}=25$
(c) $(x-1)^{2}+(y+1)^{2}=36$
(d) $(x+1)^{2}+(y-1)^{2}=16$
(e) $(x+1)^{2}+(y-1)^{2}=36$
16. Which of the following is the equation of a parabola with a maximum at $(-1,2)$ and passing through $(2,-1)$?
(a) $(y-2)=-\frac{1}{3}(x+1)^{2}$
(b) $(y+2)=(x-1)^{2}$
(c) $(y+2)=-\frac{1}{3}(x+1)^{2}$
(d) $(y-2)=-3(x+1)^{2}$
(e) $(y-2)=3(x+1)^{2}$
17. The graph of $y^{2}=2 x^{2}+5 x-3$ is:
(a) symmetric about the y-axis
(b) symmetric about the x-axis
(c) symmetric about the origin
(d) is not symmetric about any line
(e) None of the above
18. The slope of the line that goes through the point $(2,0)$ and is tangent to the circle $x^{2}+y^{2}=1$ in the first quadrant is
(a) $\frac{-1}{3}$
(b) $\frac{-1}{2}$
(c) $\frac{-1}{\sqrt{3}}$
(d) $\frac{-1}{\sqrt{2}}$
(e) None of these
19. The graphs of the lines $y=x-2$ and $y=m x+3$ intersect at a point whose x-coordinate and y-coordinate are both positive if and only if
(a) $m<1$
(b) $m=1$
(c) $-\frac{3}{2}<m<0$
(d) $-\frac{3}{2}<m$
(e) $-\frac{3}{2}<m<1$
20. Among all real number pairs (x, y) that satisfy $x^{2}+x+y^{2}+y=1$, find the largest possible value of $x+y$.
(a) $\sqrt{2}-1$
(b) 1
(c) $\sqrt{3}-1$
(d) $\sqrt{3}$
(e) None of these
21. For the ellipse $4 x^{2}+9 y^{2}-16 x+18 y-11=0$
(a) The center is $(2,-1)$ and the foci are $(2 \pm \sqrt{5},-1)$
(b) The center is $(4,1)$ and the foci are $(2 \pm \sqrt{5},-1)$
(c) The center is $(2,-1)$ and the foci are $(3 \pm \sqrt{6},-1)$
(d) The center is $(4,9)$ and the foci are $(3 \pm \sqrt{6},-1)$
(e) None of the above
22. Suppose the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ can be inscribed in the diamond shape whose vertices are $(1,0),(0,1)$, $(-1,0),(0,-1)$. Then $a^{2}+b^{2}=$
(a) 1
(b) $a^{2} b^{2}$
(c) $\frac{1}{a b}$
(d) $a^{4} b^{4}$
(e) None of the above
23. Determine the equation in rectangular coordinates of $\cos \theta+\sin \theta=1$.
(a) $x=0$
(b) $y=0$
(c) $x y=0$
(d) The equation cannot be converted to rectangular coordinates
(e) None of the above
24. Convert the polar equation $r-r \sin \theta=2$ to a rectangular equation.
(a) $x^{2}-4 y+4=0$
(b) $x^{2}+4 y+4=0$
(c) $x^{2}-2 y-2=0$
(d) $x^{2}-4 y-4=0$
(e) None of the above
25. Planet M orbits around its sun, S , in an elliptical orbit with the sun at one focus. When M is closest to S, it is 2 million miles away. When M is farthest from S , it is 18 million miles away. Determine the equation of motion of planet M around its sun S, using S as the center of the coordinate plane and assuming the other focus lies on the positive x-axis.
(a) $\frac{x^{2}}{100}+\frac{y^{2}}{36}=1$
(b) $\frac{x^{2}}{100}+\frac{y^{2}}{64}=1$
(c) $\frac{(x-6)^{2}}{100}+\frac{y^{2}}{64}=1$
(d) $\frac{(x-8)^{2}}{100}+\frac{y^{2}}{36}=1$
(e) $\frac{(x-8)^{2}}{100}+\frac{(y-6)^{2}}{36}=1$
