Modal logic axioms valid in quotient spaces of finite CW-complexes and other families of topological spaces

Maria Nogin
Bing Xu

California State University, Fresno

AMS/MAA Joint Mathematics Meetings
Atlanta, GA
January 5, 2017
• Definitions
 ▷ Topology
 ★ Particular point topological space
 ★ Excluded point topological space
Outline

• Definitions
 ▶ Topology
 ★ Particular point topological space
 ★ Excluded point topological space
 ★ Quotient space of a CW-complex
Outline

- Definitions
 - Topology
 - Particular point topological space
 - Excluded point topological space
 - Quotient space of a CW-complex
 - Logic
 - Modal logic language $\mathcal{L}\Box$
 - Interpretation of $\mathcal{L}\Box$ in topological spaces
• Definitions
 ▶ Topology
 ★ Particular point topological space
 ★ Excluded point topological space
 ★ Quotient space of a CW-complex
 ▶ Logic
 ★ Modal logic language \mathcal{L}_\Box
 ★ Interpretation of \mathcal{L}_\Box in topological spaces
 ★ Some axioms: K, T, 4, M, G
• Definitions
 ▶ Topology
 ★ Particular point topological space
 ★ Excluded point topological space
 ★ Quotient space of a CW-complex
 ▶ Logic
 ★ Modal logic language \mathcal{L}_{\Box}
 ★ Interpretation of \mathcal{L}_{\Box} in topological spaces
 ★ Some axioms: $K, T, 4, M, G$

• Validity of axioms M and G in
• Definitions
 ▶ Topology
 ★ Particular point topological space
 ★ Excluded point topological space
 ★ Quotient space of a CW-complex
 ▶ Logic
 ★ Modal logic language \mathcal{L}_\Box
 ★ Interpretation of \mathcal{L}_\Box in topological spaces
 ★ Some axioms: K, T, 4, M, G

• Validity of axioms M and G in
 ▶ particular point topological spaces
 ▶ excluded point topological spaces
 ▶ quotient spaces of finite CW-complexes
Definition 1
Let X be any nonempty set and $p \in X$. The collection

$$T_p = \{S \subseteq X \mid p \in S \text{ or } S = \emptyset\}$$

of subsets of X is called the \textit{particular point topology} on X.
Definition 1
Let X be any nonempty set and $p \in X$. The collection

$$T_p = \{ S \subseteq X \mid p \in S \text{ or } S = \emptyset \}$$

of subsets of X is called the particular point topology on X.

Definition 2
Let X be any nonempty set and $e \in X$. The collection

$$T_e = \{ S \subseteq X \mid e \notin S \text{ or } S = X \}$$

of subsets of X is called the excluded point topology on X.
Quotient space of a CW-complex

Definition 3

Let X be a CW-complex. Its quotient space $Q(X)$ is a topological space whose points are in one-to-one correspondence with cells of X, and a subset of $Q(X)$ is open if and only if the union of the corresponding cells is open in X.

Example: The quotient space of the standard CW-complex of $\mathbb{R}P^1$ is the Sierpinski space.

Definition 4

If X is a CW-complex, its cell c is called a top cell if it is not in the boundary of any other cell. A single point in $Q(X)$ is open if and only if it corresponds to a top cell.
Definition 3

Let X be a CW-complex. Its quotient space $Q(X)$ is a topological space whose points are in one-to-one correspondence with cells of X, and a subset of $Q(X)$ is open if and only if the union of the corresponding cells is open in X.

Example: The quotient space of the standard CW-complex of $\mathbb{R}P_1$ is the Sierpinski space.
Definition 3
Let X be a CW-complex. Its quotient space $Q(X)$ is a topological space whose points are in one-to-one correspondence with cells of X, and a subset of $Q(X)$ is open if and only if the union of the corresponding cells is open in X.

Example: The quotient space of the standard CW-complex of $\mathbb{R}P_1$ is the Sierpinski space.

Definition 4
If X is a CW-complex, its cell c is called a top cell if it is not in the boundary of any other cell.
Definition 3

Let X be a CW-complex. Its quotient space $Q(X)$ is a topological space whose points are in one-to-one correspondence with cells of X, and a subset of $Q(X)$ is open if and only if the union of the corresponding cells is open in X.

Example: The quotient space of the standard CW-complex of $\mathbb{R}P_1$ is the Sierpinski space.

Definition 4

If X is a CW-complex, its cell c is called a top cell if it is not in the boundary of any other cell.

A single point in $Q(X)$ is open if and only if it corresponds to a top cell.
Definition 5

- $\mathcal{L} \Box$ is the modal logic language consisting of propositional variables, \land, \lor, \neg, and \Box. Then, \Diamond is defined by $\Diamond P = \neg \Box \neg P$.

Interpretation of $\mathcal{L} \Box$ in topological spaces
Interpretation of \mathcal{L}^{\Box} in topological spaces

Definition 5

- \mathcal{L}^{\Box} is the modal logic language consisting of propositional variables, \land, \lor, \neg, and \Box. Then, \lozenge is defined by $\lozenge P = \neg \Box \neg P$.

- A topological model of \mathcal{L}^{\Box} is a pair $\langle X, \| \| \rangle$, where
 1. X is a topological space, and
 2. $\| \cdot \|$ is a function mapping formulas in \mathcal{L}^{\Box} to subsets of X satisfying
 \[
 \| F \land G \| = \| F \| \cap \| G \|
 \]
 \[
 \| F \lor G \| = \| F \| \cup \| G \|
 \]
 \[
 \| \neg F \| = \| F \|^{C} = X \setminus \| F \|
 \]
 \[
 \| \Box F \| = \text{int}(\| F \|)
 \]
Interpretation of \mathcal{L}_\square in topological spaces

Definition 5

- \mathcal{L}_\square is the modal logic language consisting of propositional variables, \land, \lor, \neg, and \square. Then, \lozenge is defined by $\lozenge P = \neg \square \neg P$.

- A **topological model** of \mathcal{L}_\square is a pair $\langle X, \| \| \rangle$, where
 1. X is a topological space, and
 2. $\| \cdot \|$ is a function mapping formulas in \mathcal{L}_\square to subsets of X satisfying

 \[
 \| F \land G \| = \| F \| \cap \| G \|
 \]

 \[
 \| F \lor G \| = \| F \| \cup \| G \|
 \]

 \[
 \| \neg F \| = \| F \|^C = X \setminus \| F \|
 \]

 \[
 \| \square F \| = \text{int}(\| F \|)
 \]

- A formula F is called *valid* in a topological space X if for any topological model $\langle X, \| \| \rangle$, we have $\| F \| = X$.
Axioms

S4:

- All axioms of the classical propositional logic,
- Axiom K: $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$,
- Axiom T: $\Box A \rightarrow A$,
- Axiom 4: $\Box A \rightarrow \Box \Box A$,
Axioms

S4:

- All axioms of the classical propositional logic,
- Axiom K: $\Box(A \to B) \to (\Box A \to \Box B)$,
- Axiom T: $\Box A \to A$,
- Axiom 4: $\Box A \to \Box \Box A$,

Inference rules

- Modus ponens: $A, A \to B \quad \frac{}{B}$,
- Necessitation: $A \quad \frac{}{\Box A}$.
Axioms

S4:

- All axioms of the classical propositional logic,
- Axiom K: $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$,
- Axiom T: $\Box A \rightarrow A$,
- Axiom 4: $\Box A \rightarrow \Box \Box A$,

Inference rules

- Modus ponens: \[
\frac{A, A \rightarrow B}{B}
\]

- Necessitation: \[
\frac{A}{\Box A}
\]

Axiom M: \[
(\Box \Diamond P) \rightarrow (\Diamond \Box P) \equiv (\Diamond \Box P) \lor (\Diamond \Box \neg P)
\]
Axioms

S4:

• All axioms of the classical propositional logic,
• Axiom K: □(A → B) → (□A → □B),
• Axiom T: □A → A,
• Axiom 4: □A → □□A,

Inference rules

• Modus ponens: \[\frac{A, A \to B}{B} \],
• Necessitation: \[\frac{A}{\Box A} \].

Axiom M: \((\Box \Diamond P) \to (\Diamond \Box P) \equiv (\Diamond \Box P) \lor (\Diamond \Box \neg P) \)

Axiom G: \((\Diamond \Box P) \to (\Box \Diamond P) \equiv (\Box \Diamond P) \lor (\Box \Diamond \neg P) \)
M and G in particular point and excluded point topological spaces

Theorem 6

Both axioms M and G are valid in any particular point topological space.
M and G in particular point and excluded point topological spaces

Theorem 6

Both axioms M and G are valid in any particular point topological space.

Theorem 7

1. Axiom M is valid in any excluded point topological space.
2. Axiom G is valid in an excluded point topological space if and only if the space has only 1 or 2 points.
Theorem 8

(1) Axiom M is valid in the quotient space of any finite CW-complex.

(2) Axiom G is valid in the quotient space of a finite CW-complex iff each connected component of the CW-complex has a unique top cell.
Theorem 8

(1) Axiom \(M \) is valid in the quotient space of any finite CW-complex.

(2) Axiom \(G \) is valid in the quotient space of a finite CW-complex iff each connected component of the CW-complex has a unique top cell.

Idea of proof:

(1) For any \(c \in Q(X) \), \(\exists t \in Q(X) \) corresponding to a top cell s.t. \(c \in \text{cl}(\{t\}) = \text{cl}(\text{int}(\{t\})) \).

(2) \(\Leftarrow \) If \(t \) corresponds to a top cell, then its entire connected component is in \(\text{int}(\text{cl}(\{t\})) \).

(2) \(\Rightarrow \) If a connected component contains more than one top cell, there are two top cells whose closures have non-empty intersection. Let \(t_1, t_2 \in Q(X) \) correspond to such two top cells and let \(c \) correspond to a cell in the intersection of their closures. Consider a validation mapping such that \(t_1 \in ||P|| \) and \(t_2 \not\in ||P|| \). Then \(c \not\in ||\square\diamond P|| \) and \(c \not\in ||\square\diamond \neg P|| \).
Theorem 8

(1) Axiom M is valid in the quotient space of any finite CW-complex.

(2) Axiom G is valid in the quotient space of a finite CW-complex iff each connected component of the CW-complex has a unique top cell.

Idea of proof:

(1) For any $c \in Q(X)$, $\exists t \in Q(X)$ corresponding to a top cell s.t. $c \in \text{cl}(\{t\}) = \text{cl}(\text{int}(\{t\}))$.

(2) (\Leftarrow) If t corresponds to a top cell, then its entire connected component is in $\text{int}(\text{cl}(\{t\}))$.
Theorem 8

(1) Axiom M is valid in the quotient space of any finite CW-complex.

(2) Axiom G is valid in the quotient space of a finite CW-complex iff each connected component of the CW-complex has a unique top cell.

Idea of proof:

(1) For any $c \in Q(X)$, $\exists t \in Q(X)$ corresponding to a top cell s.t. $c \in \text{cl}({t}) = \text{cl}(\text{int}({t}))$.

(2) (\Leftarrow) If t corresponds to a top cell, then its entire connected component is in $\text{int}(\text{cl}({t}))$.

(\Rightarrow) If a connected component contains more than one top cell, there are two top cells whose closures have non-empty intersection.
Theorem 8

(1) Axiom M is valid in the quotient space of any finite CW-complex.

(2) Axiom G is valid in the quotient space of a finite CW-complex iff each connected component of the CW-complex has a unique top cell.

Idea of proof:

(1) For any $c \in Q(X)$, $\exists t \in Q(X)$ corresponding to a top cell s.t. $c \in \text{cl}({t}) = \text{cl}(ext{int}({t}))$.

(2) (\Leftarrow) If t corresponds to a top cell, then its entire connected component is in $\text{int}(\text{cl}({t}))$.

(\Rightarrow) If a connected component contains more than one top cell, there are two top cells whose closures have non-empty intersection. Let $t_1, t_2 \in Q(X)$ correspond to such two top cells and let c correspond to a cell in the intersection of their closures.
Theorem 8

1. Axiom M is valid in the quotient space of any finite CW-complex.
2. Axiom G is valid in the quotient space of a finite CW-complex iff each connected component of the CW-complex has a unique top cell.

Idea of proof:

1. For any $c \in Q(X)$, $\exists t \in Q(X)$ corresponding to a top cell s.t. $c \in \text{cl}\{\{t\}\} = \text{cl}(\text{int}(\{t\}))$.

2. (\Leftarrow) If t corresponds to a top cell, then its entire connected component is in $\text{int}(\text{cl}(\{t\}))$.

\Rightarrow If a connected component contains more than one top cell, there are two top cells whose closures have non-empty intersection. Let $t_1, t_2 \in Q(X)$ correspond to such two top cells and let c correspond to a cell in the intersection of their closures. Consider a validation mapping such that $t_1 \in \|P\|$ and $t_2 \notin \|P\|$.
Theorem 8

(1) Axiom M is valid in the quotient space of any finite CW-complex.

(2) Axiom G is valid in the quotient space of a finite CW-complex iff each connected component of the CW-complex has a unique top cell.

Idea of proof:
(1) For any \(c \in Q(X) \), \(\exists t \in Q(X) \) corresponding to a top cell s.t. \(c \in \text{cl}(\{t\}) = \text{cl}(\text{int}(\{t\})) \).

(2) (\(\Leftarrow \)) If \(t \) corresponds to a top cell, then its entire connected component is in \(\text{int}(\text{cl}(\{t\})) \).

(\(\Rightarrow \)) If a connected component contains more than one top cell, there are two top cells whose closures have non-empty intersection. Let \(t_1, t_2 \in Q(X) \) correspond to such two top cells and let \(c \) correspond to a cell in the intersection of their closures.

Consider a validation mapping such that \(t_1 \in \|P\| \) and \(t_2 \notin \|P\| \). Then \(c \notin \|\Box\Diamond P\| \) and \(c \notin \|\Box\Diamond \neg P\| \).

Thank you!