Solutions to Practice Problems for Test 2

1. Correct answer is (a): if 35 percent of all test takers scored better than Angelica, but 40 percent of all females who took the test scored better than she did, females scored a bit higher than males.
2. Correct answer is (c): a 3rd grader who answered 80% of the questions correctly did better than Cristina, thus also exceeded the minimum state proficiency cutpoint in mathematics in her state.
3. Let's first order the data: $2,3,4,6,7,8,8,8,9,9$. The mean (average) is the sum of all the scores divided by the number of scores, i.e. $\frac{2+3+4+6+7+8+8+8+9+9}{10}=\frac{64}{10}=6.4$. The median is the average of two scores in the middle, i.e. $\frac{7+8}{2}=\frac{15}{2}=7.5$. The mode is the score that occurs most often, i.e. 8.
4. (a) True. Two rational numbers can be written as $\frac{a}{b}$ and $\frac{c}{d}$ where a, b, c, d are integers and $b \neq 0, d \neq 0$. Their product is $\frac{a c}{b d}$. Since $a c$ and $b d$ are integers and $b d \neq 0$, the product is a rational number.
(b) False. For example, 4 is a natural number, but $\sqrt{4}=2$ is not irrational: $2=\frac{2}{1}$.
(c) False. Both $\sqrt{2}$ and $-\sqrt{2}$ are irrational, but their sum is $\sqrt{2}+(-\sqrt{2})=0$ is not irrational: $0=\frac{0}{1}$.
(d) False. Prime numbers are integers, and all integers are rational.
(e) True. If r is an integer, it can be written as $\frac{r}{1}$, thus it is rational.
(f) Ture. This follows from the definition: a number is called rational if it can be written as a quotient of integers, and it is called irrational otherwise.
(g) False. Periodic (repeating) infinite decimal numbers are rational.
(h) True. We will argue that it is not possible for such a sum to be rational. Suppose r is a rational number and x is an irrational number such that $r+x$ is rational. Then we can write the rational numbers as quotients of integers: $r=\frac{a}{b}$ and $r+x=\frac{c}{d}$. Then $x=(r+x)-r=\frac{c}{d}-\frac{a}{b}=\frac{c b-a d}{d b}$. Since $c b-a d$ and $d b$ are integers, x is rational. However, we assumed that it was irrational. This is impossible.
(i) False. For example, 0 is rational and $\sqrt{2}$ is irrational, but their product is not irrational: $0 \cdot \sqrt{2}=0$.
5. For example, 3.4565 is between 3.456 and 3.457 and is rational: $3.4565=\frac{34565}{10000}$.
6. We know that $\sqrt{2}=1.4142 \ldots$ is irrational. By adding the rational number 3.8 to it, we obtain the irrational number $\sqrt{2}+3.8=5.2142 \ldots$ which is between 5.2 and 5.3.
7. (a) True, since $18=6 \cdot 3$ and 3 is an integer.
(b) False, since 3 is not 9 times an integer.
(c) True, since $7=7 \cdot 1$.
(d) False, since 4 is not 8 times an integer.
(e) True, since $20=5 \cdot 4$.
(f) True, since $10=10 \cdot 1$.
(g) True, since $12=3 \cdot 4$.
(h) False, since 8 is not 24 times an integer.
(i) True, since $13=13 \cdot 1$.
(j) False, since 5 is not 30 times an integer.
(k) True, since $30=2 \cdot 15$.
(l) True, since $100=100 \cdot 1$.
8. $300=2 \cdot 2 \cdot 3 \cdot 5 \cdot 5$.
9. First we'll find the prime factorization of $630: 630=2 \cdot 3 \cdot 3 \cdot 5 \cdot 7$. We see that 300 and 630 share three factors: 2,3 , and 5 . Thus the greatest commond factor of 300 and 630 is $2 \cdot 3 \cdot 5=30$ and the least common multiple is $2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7=6300$.
10. Answers are shown below:

11. First we will find all real solutions. The product of real numbers is 0 if and only if at least one of the factors is 0 , thus we have $x-2=0$ or $x+2=0$ or $2 x+1=0$. We get three real roots: $x=2, x=-2$, and $x=-0.5$. Therefore the answers are as follows:
(a) 2
(b) 2 and -2
(c) $2,-2$, and -0.5
12. Again, first we will find all real solutions. Multiplying both sides of the equation by $(x+2)(x+3)$ we get $3(x+3)=2(x+2)$. Multiplying out gives $3 x+9=2 x+4$ which simplifies to $x+5=0$. Thus there is only one real root: $x=-5$. Therefore the answers are as follows:
(a) no solutions
(b) -5
(c) -5
