MATH 105

The final exam is on Friday, December 15, 10:30 AM - 12:30 PM, in BT 1688.

Sample Final Exam - Solutions

1. Evaluate: $\frac{6!\cdot 6^{1.5}}{2!\sqrt{24}}=\frac{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 6^{1.5}}{2 \sqrt{4} \sqrt{6}}=\frac{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 6^{1.5}}{2 \cdot 26^{0.5}}=2 \cdot 3 \cdot 5 \cdot 6 \cdot 6=1080$
2. Solve the inequality:
(a) $3 x+6<5-x$
$4 x<-1$
$x<-\frac{1}{4}$
Ans: $\left(-\infty,-\frac{1}{4}\right)$
(b) $6 x-8>x^{2}$
$x^{2}-6 x+8<0$
$(x-2)(x-4)<0$
$2<x<4$
Ans: $(2,4)$
3. Find an equation of the line through $P(2,-4)$ and $Q(-1,5)$.
slope $=\frac{5+4}{-1-2}=-3$
Equation: $y+4=-3(x-2)$
$y=-3 x+6-4$
$y=-3 x+2$
4. Let $f(x)=8 x-1, g(x)=\sqrt{x-2}$.
(a) Find $f \circ g(x)$ and its domain.
$f \circ g(x)=8 \sqrt{x-2}-1$
$f \circ g(x)$ is defined when $x-2 \geq 0$, i.e. $x \geq 2$.
Domain: $[2,+\infty)$
(b) Find $g \circ f(x)$ and its domain.
$g \circ f(x)=\sqrt{8 x-1-2}=\sqrt{8 x-3}$
$g \circ f(x)$ is defined when $8 x-3 \geq 0$, i.e. $x \geq \frac{3}{8}$.
Domain: $\left[\frac{3}{8},+\infty\right)$
5. Sketch the graph of the function:
(a) $f(x)=\sqrt{x-2}+1$

Shift the graph of $y=\sqrt{x}$ two units to the right and one unit upward:

(b) $g(x)=\frac{e^{x}}{2}$

Compress the graph of $y=e^{x}$ by a factor of 2 vertically:

(c) $h(x)=(x+1)(x-2)(x-5)$

This is a cubic polynomial with x-intercepts $-1,2$, and 5 :

6. Simplify:
(a) $\log _{5} \sqrt[3]{5}=\log _{5} 5^{\frac{1}{3}}=\frac{1}{3} \log _{5} 5=\frac{1}{3}$
(b) $\sin (\pi)-3 \cos \left(\frac{\pi}{6}\right)=0-3 \cdot \frac{\sqrt{3}}{2}=-\frac{3 \sqrt{3}}{2}$
7. Sketch the graph and find an equation of a rational function f that satisfies the folloing four conditions:

- f has a vertical asymptote $x=-3$
- f has a horizontal asymptote $y=0$
- 5 is an x-intercept of f
- 4 is a y-intercept of f

Exapmle: $f(x)=\frac{-36(x-5)}{5(x+3)^{2}}$

(Note: there are many such functions.)
8. Solve the equation: $\ln 3^{\left(x^{2}\right)}=5$
$x^{2} \ln 3=5$
$x^{2}=\frac{5}{\ln 3}$
$x= \pm \sqrt{\frac{5}{\ln 3}}$
9. A conical paper cup is constructed by removing a sector from a circle of radius 5 inches and attaching edge $O A$ to $O B$ (see the figure). Find angle $A O B$ so that the cup has a depth of 4 inches.
By the Pythagorean theorem, the radius of the top of the cup is $\sqrt{5^{2}-4^{2}}=3$ (inches). Therefore the circumference of the top is 6π. Then $6 \pi=5 \angle A O B$, so $\angle A O B=\frac{6 \pi}{5}$ (radians).
10. Find all real solutions of the equation: $\tan (2 x) \cos (2 x)=1$.
$\frac{\sin (2 x)}{\cos (2 x)} \cdot \cos (2 x)=1$
$\sin (2 x)=1$
$2 x=\frac{\pi}{2}+2 \pi k$ where k is an integer
$x=\frac{\pi}{4}+\pi k$ where k is an integer
11. Solve the system: $\left\{\begin{aligned} x-3 y & =4 \\ -2 x+6 y & =2\end{aligned}\right.$

Dividing the second equation by 2 gives $x-3 y=-2$ which contradicts the first equation. Therefore there no solutions.
12. Evaluate: $\sum_{k=1}^{4}(k-1)(k+1)=(1-1)(1+1)+(2-1)(2+1)+(3-1)(3+1)+(4-1)(4+1)=$ $0+3+8+15=26$
13. Express the sum in terms of summation notation: $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{99 \cdot 100}=$ $\sum_{k=1}^{99} \frac{1}{k \cdot(k+1)}$
14. Sketch the graph of the equation:
(a) $10 y=100-x^{2}$

$$
y=10-\frac{x^{2}}{10}
$$

Reflect the graph of $y=x^{2}$ about the x-axis, compress vertically by a factor of 10 , and shift 10 units upward:

(b) $4 x^{2}+y^{2}-24 x+4 y+36=0$
$\left(4 x^{2}-24 x\right)+\left(y^{2}+4 y\right)+36=0$
$4\left(x^{2}-6 x\right)+\left(y^{2}+4 y\right)+36=0$
$4\left(x^{2}-6 x+9\right)+\left(y^{2}+4 y+4\right)+36=0+36+4$
$4(x-3)^{2}+(y+2)^{2}=4$
$(x-3)^{2}+\frac{(y+2)^{2}}{4}=1$
$\frac{(x-3)^{2}}{1^{2}}+\frac{(y+2)^{2}}{2^{2}}=1$
This is an ellipse with center at $(3,-2), a=1$, and $b=2$:

