MATH 105

The final exam is on Friday, December 15, 10:30 AM - 12:30 PM, in BT 1688.

Sample Final Exam

- No books or calculators are allowed.
- One letter size (both sides) sheet of notes is allowed.
- Please show all your work.
- Please simplify your answers.

1. Evaluate: $\frac{6!\cdot 6^{1.5}}{2!\sqrt{24}}$
2. Solve the inequality:
(a) $3 x+6<5-x$
(b) $6 x-8>x^{2}$
3. Find an equation of the line through $P(2,-4)$ and $Q(-1,5)$.
4. Let $f(x)=8 x-1, g(x)=\sqrt{x-2}$.
(a) Find $f \circ g(x)$ and its domain.
(b) Find $g \circ f(x)$ and its domain.
5. Sketch the graph of the function:
(a) $f(x)=\sqrt{x-2}+1$
(b) $g(x)=\frac{e^{x}}{2}$
(c) $h(x)=(x+1)(x-2)(x-5)$
6. Simplify:
(a) $\log _{5} \sqrt[3]{5}$
(b) $\sin (\pi)-3 \cos \left(\frac{\pi}{6}\right)$
7. Sketch the graph and find an equation of a rational function f that satisfies the folloing four conditions:

- f has a vertical asymptote $x=-3$
- f has a horizontal asymptote $y=0$
- 5 is an x-intercept of f
- 4 is a y-intercept of f

8. Solve the equation: $\ln 3^{\left(x^{2}\right)}=5$
9. A conical paper cup is constructed by removing a sector from a circle of radius 5 inches and attaching edge $O A$ to $O B$ (see the figure). Find angle $A O B$ so that the cup has a depth of 4 inches.
10. Find all real solutions of the equation: $\tan (2 x) \cos (2 x)=1$.
11. Solve the system: $\left\{\begin{aligned} x-3 y & =4 \\ -2 x+6 y & =2\end{aligned}\right.$
12. Evaluate: $\sum_{k=1}^{4}(k-1)(k+1)$
13. Express the sum in terms of summation notation: $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{99 \cdot 100}$
14. Sketch the graph of the equation:
(a) $10 y=100-x^{2}$
(b) $4 x^{2}+y^{2}-24 x+4 y+36=0$
