2.8 Logical Equivalence

Figure 2.12 shows a truth table for the two statements $P \Rightarrow Q$ and $(\sim P) \vee Q$. The corresponding columns of these compound statements are identical; in other words, these two compound statements have exactly the same truth value for every combination of truth values of the statements P and Q. In general, whenever two (compound) statements R and S have the same truth values for all combinations of truth values of their component statements, then we say that R and S are logically equivalent and indicate this by writing $R \equiv S$. Hence $P \Rightarrow Q$ and $(\sim P) \vee Q$ are logically equivalent and so $P \Rightarrow Q \equiv$ $(\sim P) \vee Q$.

Another, even simpler, example of logical equivalence concerns $P \wedge Q$ and $Q \wedge P$. That $P \wedge Q \equiv Q \wedge P$ is verified in the truth table shown in Figure 2.13.

What is the practical significance of logical equivalence? Suppose that R and S are logically equivalent compound statements. Then we know that R and S have the same truth values for all possible combinations of truth values of their component statements. But this means that the biconditional $R \Leftrightarrow S$ is true for all possible combinations of truth values of their component statements and hence $R \Leftrightarrow S$ is a tautology. Conversely, if $R \Leftrightarrow S$ is a tautology, then R and S are logically equivalent.

| Q | | $\sim P$ | |
| :---: | :---: | :---: | :---: | :---: |$\quad P \Rightarrow Q \quad(\sim P) \vee Q$

Figure 2.12 Verification of $P \Rightarrow Q \equiv(\sim P) \vee Q$

P	Q	$P \wedge Q$	$Q \wedge P$
T	T	\boldsymbol{T}	\boldsymbol{T}
T	F	\boldsymbol{F}	\boldsymbol{F}
F	T	\boldsymbol{F}	\boldsymbol{F}
F	F	\boldsymbol{F}	\boldsymbol{F}

Figure 2.13 Verification of $P \wedge Q \equiv Q \wedge P$

Let R be a mathematical statement that we would like to show is true, and suppose that R and some statement S are logically equivalent. If we can show that S is true, then R is true as well. For example, suppose that we want to verify the truth of an implication $P \Rightarrow Q$. If we can establish the truth of the statement $(\sim P) \vee Q$, then the logical equivalence of $P \Rightarrow Q$ and $(\sim P) \vee Q$ guarantees that $P \Rightarrow Q$ is true as well.

Example 2.16 Returning to the mathematics instructor in Example 2.6 and whether she kept her promise that.

If you earn an A on the final exam, then you will receive an A for the final grade.
we need know only that the student did not receive an A on the final exam or the student received an A as a final grade to see that she kept her promise.

Since the logical equivalence of $P \Rightarrow Q$ and $(\sim P) \vee Q$, verified in Figure 2.12, is especially important and we will have occasion to use this fact often, we state it as a theorem.

Theorem 2.17 Let P and Q be two statements. Then

$$
P \Rightarrow Q \text { and }(\sim P) \vee Q
$$

are logically equivalent.
Let's return to the truth table in Figure 2.13, where we showed that $P \wedge Q$ and $Q \wedge P$ are logically equivalent for any two statements P and Q. In particular, this says that

$$
(P \Rightarrow Q) \wedge(Q \Rightarrow P) \text { and }(Q \Rightarrow P) \wedge(P \Rightarrow Q)
$$

are logically equivalent. Of course, $(P \Rightarrow Q) \wedge(Q \Rightarrow P)$ is precisely what is called the biconditional of P and Q. Since $(P \Rightarrow Q) \wedge(Q \Rightarrow P)$ and $(Q \Rightarrow P) \wedge(P \Rightarrow Q)$ are logically equivalent, $(Q \Rightarrow P) \wedge(P \Rightarrow Q)$ represents the biconditional of P and Q as well. Since $Q \Rightarrow P$ can be written as " P if Q " and $P \Rightarrow Q$ can be expressed as " P only if Q ", their conjunction can be written as " P if Q and P only if Q " or, more simply, as

$$
P \text { if and only if } Q .
$$

Consequently, expressing $P \Leftrightarrow Q$ as " P if and only if Q " is justified. Furthermore, since $Q \Rightarrow P$ can be phrased as " P is necessary for Q " and $P \Rightarrow Q$ can be expressed as " P is sufficient for Q ", writing $P \Leftrightarrow Q$ as " P is necessary and sufficient for Q " is likewise justified.

2.9 Some Fundamental Properties of Logical Equivalence

It probably comes as no surprise that the statements P and $\sim(\sim P)$ are logically equivalent. This fact is verified in Figure 2.14.

P	$\sim P$	$\sim(\sim P)$
T	F	T
F	T	F

Figure 2.14 Verification of $P \equiv \sim(\sim P)$
We mentioned in Figure 2.13 that, for two statements P and Q, the statements $P \wedge Q$ and $Q \wedge P$ are logically equivalent. There are other fundamental logical equivalences that we often encounter as well.

Theorem 2.18 For statements P, Q, and R,
(1) Commutative Laws
(a) $P \vee Q \equiv Q \vee P$
(b) $P \wedge Q \equiv Q \wedge P$
(2) Associative Laws
(a) $P \vee(Q \vee R) \equiv(P \vee Q) \vee R$
(b) $P \wedge(Q \wedge R) \equiv(P \wedge Q) \wedge R$
(3) Distributive Laws
(a) $P \vee(Q \wedge R) \equiv(P \vee Q) \wedge(P \vee R)$
(b) $P \wedge(Q \vee R) \equiv(P \wedge Q) \vee(P \wedge R)$
(4) De Morgan's Laws
(a) $\sim(P \vee Q) \equiv(\sim P) \wedge(\sim Q)$
(b) $\sim(P \wedge Q) \equiv(\sim P) \vee(\sim Q)$.

Each part of Theorem 2.18 is verified by means of a truth table. We have already established the commutative law for conjunction (namely, that $P \wedge Q \equiv Q \wedge P$) in Figure 2.13. In Figure 2.15 $P \vee(Q \wedge R) \equiv(P \vee Q) \wedge(P \vee R)$ is verified by observing that the columns corresponding to the statements $P \vee(Q \wedge R)$ and $(P \vee Q) \wedge(P \vee R)$ are identical.

The laws given in Theorem 2.18, together with other known logical equivalences, can be used to good advantage at times to prove other logical equivalences (without introducing a truth table).

P	Q	R	$Q \wedge R$	$P \vee(Q \wedge R)$	$P \vee Q$	$P \vee R$	$(P \vee Q) \wedge(P \vee R)$
T							
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T						
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

Figure 2.15 Verification of the distributive law $P \vee(Q \wedge R) \equiv(P \vee Q) \wedge(P \vee R)$

Example 2.19 Suppose that we are asked to prove that

$$
\sim(P \Rightarrow Q) \equiv P \wedge(\sim Q)
$$

for every two statements P and Q. Using the logical equivalence of $P \Rightarrow Q$ and $(\sim P) \vee Q$ from Theorem 2.17 and Theorem 2.18(4a), we have the following:

$$
\begin{equation*}
\sim(P \Rightarrow Q) \equiv \sim((\sim P) \vee Q) \equiv(\sim(\sim P)) \wedge(\sim Q) \equiv P \wedge(\sim Q) \tag{2.1}
\end{equation*}
$$

implying that the statements $\sim(P \Rightarrow Q)$ and $P \wedge(\sim Q)$ are logically equivalent, which we allided to earlier.

It is important to keep in mind what we have said about logical equivalence. For example, the logical equivalence of $P \wedge Q$ and $Q \wedge P$ allows us to replace a statement of the type $P \wedge Q$ by $Q \wedge P$ without changing its truth value. As an additional example, according to De Morgan's Laws in Theorem 2.18, if it is not the case that an integer a is even or an integer b is even, then it follows that a and b are both odd.

Example 2.20 Using the second of De Morgan's Laws and (2.1), we can establish a useful logically equivalent form of the negation of $P \Leftrightarrow Q$ by the following string of logical equivalences:

$$
\begin{aligned}
\sim(P \Leftrightarrow Q) & \equiv \sim((P \Rightarrow Q) \wedge(Q \Rightarrow P)) \\
& \equiv(\sim(P \Rightarrow Q)) \vee(\sim(Q \Rightarrow P)) \\
& \equiv(P \wedge(\sim Q)) \vee(Q \wedge(\sim P))
\end{aligned}
$$

What we have observed about the negation of an implication and a biconditional is repeated in the following theorem.

Theorem 2.21 For statements P and Q,
(a) $\sim(P \Rightarrow Q) \equiv P \wedge(\sim Q)$
(b) $\sim(P \Leftrightarrow Q) \equiv(P \wedge(\sim Q)) \vee(Q \wedge(\sim P))$.

