2.10 Quantified Statements

We have mentioned that if $P(x)$ is an open sentence over a domain S, then $P(x)$ is a statement for each $x \in S$. We illustrate this again.

Example 2.22 If $S=\{1,2, \cdots, 7\}$, then

$$
P(n): \frac{2 n^{2}+5+(-1)^{n}}{2} \text { is prime. }
$$

is a statement for each $n \in S$. Therefore,
$P(1): 3$ is prime.
$P(2): 7$ is prime.
$P(3): 11$ is prime.
$P(4): 19$ is prime.
are true statements, while
$P(5): 27$ is prime.
$P(6): 39$ is prime.
$P(7): 51$ is prime.
are false statements.
There are other ways that an open sentence can be converted into a statement, namely by a method called quantification. Let $P(x)$ be an open sentence over a domain S. Adding the phrase "For every $x \in S$ " to $P(x)$ produces a statement called a quantified statement. The phrase "for every" is referred to as the universal quantifier and is denoted by the symbol \forall. Other ways to express the universal quantifier are "for each" and "for all". This quantified statement is expressed in symbols by

$$
\begin{equation*}
\forall x \in S, P(x) \tag{2.2}
\end{equation*}
$$

and is expressed in words by

$$
\begin{equation*}
\text { For every } x \in S, P(x) \tag{2.3}
\end{equation*}
$$

The quantified statement (2.2) (or (2.3)) is true if $P(x)$ is true for every $x \in S$; while the quantified statement (2.2) is false if $P(x)$ is false for at least one element $x \in S$.

Another way to convert an open sentence $P(x)$ over a domain S into a statement through quantification is by the introduction of a quantifier called an existential quantifier. Each of the phrases "there exists", "there is", "for some", and "for at least one" is referred to as an existential quantifier and is denoted by the symbol \exists. The quantified statement

$$
\begin{equation*}
\exists x \in S, P(x) \tag{2.4}
\end{equation*}
$$

can be expressed in words by

$$
\begin{equation*}
\text { There exists } x \in S \text { such that } P(x) \tag{2.5}
\end{equation*}
$$

The quantified statement (2.4) (or (2.5)) is true if $P(x)$ is true for at least one element $x \in S$, while the quantified statement (2.4) is false if $P(x)$ is false for all $x \in S$.

We now consider two quantified statements constructed from the open sentence we saw in Example 2.22.

Example 2.23 For the open sentence

$$
P(n): \frac{2 n^{2}+5+(-1)^{n}}{2} \text { is prime. }
$$

over the domain $S=\{1,2, \cdots, 7\}$, the quantified statement

$$
\forall n \in S, P(n): \text { For every } n \in S, \frac{2 n^{2}+5+(-1)^{n}}{2} \text { is prime. }
$$

is false since $P(5)$ is false, for example; while the quantified statement
$\exists n \in S, P(n):$ There exists $n \in S$ such that $\frac{2 n^{2}+5+(-1)^{n}}{2}$ is prime. is true since $P(1)$ is true, for example.

The quantified statement $\forall x \in S, P(x)$ can also be expressed as

$$
\text { If } x \in S \text {, then } P(x) \text {. }
$$

Consider the open sentence $P(x): x^{2} \geq 0$. over the set \mathbf{R} of real numbers. Then

$$
\forall x \in \mathbf{R}, P(x)
$$

or, equivalently,

$$
\forall x \in \mathbf{R}, x^{2} \geq 0
$$

can be expressed as

$$
\text { For every real number } x, x^{2} \geq 0 \text {. }
$$

or

$$
\text { If } x \text { is a real number, then } x^{2} \geq 0 \text {. }
$$

as well as
The square of every real number is nonnegative.
In general, the universal quantifier is used to claim that the statement resulting from a given open sentence is true when each value of the domain of the variable is assigned to the variable. Consequently, the statement $\forall x \in \mathbf{R}, x^{2} \geq 0$ is true since $x^{2} \geq 0$ is true for every real number x.

Suppose now that we were to consider the open sentence $Q(x): x^{2} \leq 0$. The statement $\forall x \in \mathbf{R}, Q(x)$ (that is, for every real number x, we have $x^{2} \leq 0$) is false since, for example, $Q(1)$ is false. Of course, this means that its negation is true. If it were not the case that for every real number x, we have $x^{2} \leq 0$, then there must exist some real number x such that $x^{2}>0$. This negation

There exists a real number x such that $x^{2}>0$.
can be written in symbols as

$$
\exists x \in \mathbf{R}, x^{2}>0 \text { or } \exists x \in \mathbf{R}, \sim Q(x) .
$$

More generally, if we are considering an open sentence $P(x)$ over a domain S, then

$$
\sim(\forall x \in S, P(x)) \equiv \exists x \in S, \sim P(x) .
$$

Example 2.24 Suppose that we are considering the set $A=\{1,2,3\}$ and its power set $\mathcal{P}(A)$, the set of all subsets of A. Then the quantified statement

$$
\begin{equation*}
\text { For every set } B \in \mathcal{P}(A), A-B \neq \emptyset \text {. } \tag{2.6}
\end{equation*}
$$

is false since for the subset $B=A=\{1,2,3\}$, we have $A-B=\emptyset$. The negation of the statement (2.6) is

There exists $B \in \mathcal{P}(A)$ such that $A-B=\emptyset$.
The statement (2.7) is therefore true since for $B=A \in \mathcal{P}(A)$, we have $A-B=\emptyset$. The statement (2.6) can also be written as

$$
\begin{equation*}
\text { If } B \subseteq A \text {, then } A-B \neq \emptyset \tag{2.8}
\end{equation*}
$$

Consequently, the negation of (2.8) can be expressed as

$$
\text { There exists some subset } B \text { of } A \text { such that } A-B=\emptyset \text {. }
$$

The existential quantifier is used to claim that at least one statement resulting from a given open sentence is true when the values of a variable are assigned from its domain. We know that for an open sentence $P(x)$ over a domain S, the quantified statement $\exists x \in S, P(x)$ is true provided $P(x)$ is a true statement for at least one element $x \in S$. Thus the statement $\exists x \in \mathbf{R}, x^{2}>0$ is true since, for example, $x^{2}>0$ is true for $x=1$.

The quantified statement

$$
\exists x \in \mathbf{R}, 3 x=12
$$

is therefore true since there is some real number x for which $3 x=12$, namely $x=4$ has this property. (Indeed, $x=4$ is the only real number for which $3 x=12$.) On the other hand, the quantified statement

$$
\exists n \in \mathbf{Z}, 4 n-1=0
$$

is false as there is no integer n for which $4 n-1=0$. (Of course, $4 n-1=0$ when $n=1 / 4$ but $1 / 4$ is not an integer.)

Suppose that $Q(x)$ is an open sentence over a domain S. If the statement $\exists x \in$ $S, Q(x)$ is not true, then it must be the case that for every $x \in S, Q(x)$ is false. That is,

$$
\sim(\exists x \in S, Q(x)) \equiv \forall x \in S, \sim Q(x)
$$

We illustrate this with a specific example.
Example 2.25 The following statement contains the existential quantifier:

$$
\begin{equation*}
\text { There exists a real number } x \text { such that } x^{2}=3 \tag{2.9}
\end{equation*}
$$

If we let $P(x): x^{2}=3$, then (2.9) can be rewritten as $\exists x \in \mathbf{R}, P(x)$. The statement (2.9) is true since $P(x)$ is true when $x=\sqrt{3}$ (or when $x=-\sqrt{3}$). Hence the negation of (2.9) is:

$$
\begin{equation*}
\text { For every real number } x, x^{2} \neq 3 \tag{2.10}
\end{equation*}
$$

The statement (2.10) is therefore false.
Let $P(x, y)$ be an open sentence, where the domain of the variable x is S and the domain of the variable y is T. Then the quantified statement

$$
\text { For all } x \in S \text { and } y \in T, P(x, y)
$$

can be expressed symbolically as

$$
\begin{equation*}
\forall x \in S, \forall y \in T, P(x, y) . \tag{2.11}
\end{equation*}
$$

The negation of the statement (2.11) is

$$
\begin{align*}
\sim(\forall x \in S, \forall y \in T, P(x, y)) & \equiv \exists x \in S, \sim(\forall y \in T, P(x, y)) \\
& \equiv \exists x \in S, \exists y \in T, \sim P(x, y) . \tag{2.12}
\end{align*}
$$

We now consider examples of quantified statements involving two variables.

Example 2.26 Consider the statement

$$
\begin{equation*}
\text { For every two real numbers } x \text { and } y, x^{2}+y^{2} \geq 0 \tag{2.13}
\end{equation*}
$$

If we let

$$
P(x, y): x^{2}+y^{2} \geq 0
$$

where the domain of both x and y is \mathbf{R}, then statement (2.13) can be expressed as

$$
\begin{equation*}
\forall x \in \mathbf{R}, \forall y \in \mathbf{R}, \quad P(x, y) \tag{2.14}
\end{equation*}
$$

or as

$$
\forall x, y \in \mathbf{R}, P(x, y)
$$

Since $x^{2} \geq 0$ and $y^{2} \geq 0$ for all real numbers x and y and so $x^{2}+y^{2} \geq 0, P(x, y)$ is true for all real numbers x and y and the quantified statement (2.14) is true.

The negation of statement (2.14) is therefore

$$
\begin{equation*}
\sim(\forall x \in \mathbf{R}, \forall y \in \mathbf{R}, \quad P(x, y)) \equiv \exists x \in \mathbf{R}, \exists y \in \mathbf{R}, \sim P(x, y) \tag{2.15}
\end{equation*}
$$

which, in words, is

$$
\begin{equation*}
\text { There exist real numbers } x \text { and } y \text { such that } x^{2}+y^{2}<0 \text {. } \tag{2.16}
\end{equation*}
$$

The statement (2.16) is therefore false.

For an open sentence containing two variables, the domains of the variables need not be the same.

Example 2.27 Consider the statement

$$
\begin{equation*}
\text { For every } s \in S \text { and } t \in T, s t+2 \text { is a prime. } \tag{2.17}
\end{equation*}
$$

where the domain of the variable s is $S=\{1,3,5\}$ and the domain of the variable t is $T=\{3,9\}$. If we let

$$
Q(s, t): s t+2 \text { is a prime }
$$

then the statement (2.17) can be expressed as

$$
\begin{equation*}
\forall s \in S, \forall t \in T, Q(s, t) \tag{2.18}
\end{equation*}
$$

Since all of the statements
$Q(1,3): 1 \cdot 3+2$ is a prime. $\quad Q(3,3): 3 \cdot 3+2$ is a prime. $Q(5,3): 5 \cdot 3+2$ is a prime.
$Q(1,9): 1 \cdot 9+2$ is a prime. $\quad Q(3,9): 3 \cdot 9+2$ is a prime. $Q(5,9): 5 \cdot 9+2$ is a prime.
are true, the quantified statement (2.18) is true.

As we saw in (2.12), the negation of the quantified statement (2.18) is

$$
\sim(\forall s \in S, \forall t \in T, Q(s, t)) \equiv \exists s \in S, \exists t \in T, \sim Q(s, t)
$$

and so the negation of (2.17) is
There exist $s \in S$ and $t \in T$ such that st +2 is not a prime.
The statement (2.19) is therefore false.
Again; let $P(x, y)$ be an open sentence, where the domain of the variable x is S and the domain of the variable y is T. The quantified statement

$$
\text { There exist } x \in S \text { and } y \in T \text { such that } P(x, y)
$$

can be expressed in symbols as

$$
\begin{equation*}
\exists x \in S, \exists y \in T, P(x, y) \tag{2.20}
\end{equation*}
$$

The negation of the statement (2.20) is

$$
\begin{align*}
\sim(\exists x \in S, \exists y \in T, P(x, y)) & \equiv \forall x \in S, \sim(\exists y \in T, P(x, y)) \\
& \equiv \forall x \in S, \forall y \in T, \sim P(x, y) \tag{2.21}
\end{align*}
$$

We now illustrate this situation.
Example 2.28 Consider the open sentence

$$
R(s, t):|s-1|+|t-2| \leq 2
$$

where the domain of the variable s is the set S of even integers and the domain of the variable t is the set T of odd integers. Then the quantified statement

$$
\begin{equation*}
\exists s \in S, \exists t \in T, R(s, t) \tag{2.22}
\end{equation*}
$$

can be expressed in words as
There exist an even integer s and an odd integer t such that $|s-1|+|t-2| \leq 2$.
Since $R(2,3): 1+1 \leq 2$ is true, the quantified statement (2.23) is true.
The negation of (2.22) is therefore

$$
\begin{equation*}
\sim(\exists s \in S, \exists t \in T, R(s, t)) \equiv \forall s \in S, \forall t \in T, \sim R(s, t) \tag{2.24}
\end{equation*}
$$

and so the negation of (2.22), in words, is
For every even integer s and every odd integer $t,|s-1|+|t-2|>2$.
The quantified statement (2.25) is therefore false.
Quantified statements may contain both universal and existential quantifiers. We will encounter this in Section 7.2.

