2.7 Tautologies and Contradictions

The symbols $\sim, \vee, \wedge, \Rightarrow$, and \Leftrightarrow are sometimes referred to as logical connectives. From given statements, we can use these logical connectives to form more intricate statements. For example, the statement $(P \vee Q) \wedge(P \vee R)$ is a statement formed from the given statements P, Q, and R and the logical connectives \vee and \wedge. We call $(P \vee Q) \wedge(P \vee R)$ a compound statement. More generally, a compound statement is a statement composed of one or more given statements (called component statements in this context) and at least one logical connective. For example, for a given component statement P, its negation $\sim P$ is a compound statement.

The compound statement $P \vee(\sim P)$, whose truth table is given in Figure 2.8, has the feature that it is true regardless of the truth value of P.

A compound statement S is called a tautology if it is true for all possible combinations of truth values of the component statements that comprise S. Hence $P \vee(\sim P)$ is

$P \sim P$	$P \vee(\sim P)$	
T	F	T
F	T	T

Figure 2.8 An example of a tautology

$P Q \sim Q$
$Q \Rightarrow Q$
T
:---:
T
F
F

Figure 2.9 Another tautology
a tautology, as is $(\sim Q) \vee(P \Rightarrow Q)$. This latter fact is verified in the truth table shown in Figure 2.9.

Letting

$$
P_{1}: 3 \text { is odd. and } P_{2}: 57 \text { is prime. }
$$

we see that not only is
57 is not prime, or 57 is prime if 3 is odd.
a true statement, but $\left(\sim P_{2}\right) \vee\left(P_{1} \Rightarrow P_{2}\right)$ is true regardless of which statements P_{1} and P_{2} are being considered.

On the other hand, a compound statement S is called a contradiction if it is false for all possible combinations of truth values of the component statements that are used to form S. The statement $P \wedge(\sim P)$ is a contradiction, as is shown in Figure 2.10. Hence the statement

3 is odd and 3 is not odd.
is false.
Another example of a contradiction is $(P \wedge Q) \wedge(Q \Rightarrow(\sim P))$, which is verified in the truth table shown in Figure 2.11.

Indeed, if a compound statement S is a tautology, then its negation $\sim S$ is a contradiction.

P	\sim	$P \wedge(\sim P)$
T	F	\boldsymbol{F}
F	T	\boldsymbol{F}

Figure 2.10 An example of a contradiction
$P \quad Q \quad \sim P \quad P \wedge Q$

T	T	F	T	F	$(P \wedge Q) \wedge(Q \Rightarrow \sim P)$
T	F	F	F	T	\boldsymbol{F}
F	T	T	F	T	\boldsymbol{F}
F	F	T	F	T	\boldsymbol{F}

Figure 2.11 Another contradiction

