EXERCISES FOR CHAPTER 2

Section 2.1: Statements

2.1. Which of the following sentences are statements? For those that are, indicate the truth value.

- (a) The integer 123 is prime.
- (b) The integer 0 is even.
- (c) Is $5 \times 2 = 10$?
- (d) $x^2 4 = 0$.
- (e) Multiply 5x + 2 by 3.
- (f) 5x + 3 is an odd integer.
- (g) What an impossible question!

58 Chapter 2 Logic

2.2. Consider the sets A, B, C, and D below. Which of the following statements are true? Give an explanation for each false statement.

 $A = \{1, 4, 7, 10, 13, 16, \ldots\} \quad C = \{x \in \mathbb{Z} : x \text{ is prime and } x \neq 2\}$ $B = \{x \in \mathbb{Z} : x \text{ is odd}\} \quad D = \{1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots\}$

(a) $25 \in A$, (b) $33 \in D$, (c) $22 \notin A \cup D$, (d) $C \subseteq B$, (e) $\emptyset \in B \cap D$, (f) $53 \notin C_*$

2.3. Which of the following statements are true? Give an explanation for each false statement.
(a) Ø ∈ Ø (b) Ø ∈ {Ø} (c) {1, 3} = {3, 1}
(d) Ø = {Ø} (e) Ø ⊂ {Ø} (f) 1 ⊆ {1}.

2.4. The following is an open sentence over the domain **R**:

$$P(x): x(x-1) = 6.$$

(a) For what values of x is P(x) a true statement?

(b) For what values of x is P(x) a false statement?

2.5. For the open sentence P(x): 3x - 2 > 4 over the domain Z, determine:

- (a) the values of x for which P(x) is true;
- (b) the values of x for which P(x) is false.
- 2.6. For the open sentence $P(A) : A \subseteq \{1, 2, 3\}$ over the domain $S = \mathcal{P}(\{1, 2, 4\})$, determine:
 - (a) all $A \in S$ for which P(A) is true;
 - (b) all $A \in S$ for which P(A) is false;
 - (c) all $A \in S$ for which $A \cap \{1, 2, 3\} = \emptyset$.

2.7. Let

$$P(n): n \text{ and } n+2 \text{ are primes.}$$

be an open sentence over the domain N. Find six positive integers n for which P(n) is true. If $n \in \mathbb{N}$ such that P(n) is true, then the two integers n, n + 2 are called **twin primes**. It has been conjectured that there are infinitely many twin primes.

Section 2.2: The Negation of a Statement

2.8. State the negation of each of the following statements.

- (a) $\sqrt{2}$ is a rational number.
- (b) 0 is not a negative integer.
- (c) 111 is a prime number.
- 2.9. Complete the truth table in Figure 2.16.

P	Q_{\parallel}	$\sim P$	$\sim Q$
T	T		
T	F		
F	T		
F	F		

Figure 2.16 The truth table for Exercise 2.9.

P	Q	$\sim Q$	$P \land (\sim Q)$
T	T		
T	F		
F	T		
F	F		

Figure 2.17 The truth table for Exercise 2.12.

Section 2.3: The Disjunction and Conjunction of Statements

- 2.10. Let P: 15 is odd and Q: 21 is prime. State each of the following in words, and determine whether they are true or false. (a) $P \lor Q$ (b) $P \land Q$ (c) $(\sim P) \lor Q$ (d) $P \land (\sim Q)$.
- 2.11. For the sets $A = \{1, 2, \dots, 10\}$ and $B = \{2, 4, 6, 9, 12, 25\}$, consider the statements

 $P: A \subseteq B. \quad Q: |A - B| = 6.$

Determine which of the following statements are true: (a) $P \lor Q$ (b) $P \lor (\sim Q)$ (c) $P \land Q$ (d) $(\sim P) \land Q$ (e) $(\sim P) \lor (\sim Q)$.

- 2.12. Complete the truth table in Figure 2.17.
- 2.13. Let $S = \{1, 2, \dots, 6\}$ and let

$$P(A): A \cap \{2, 4, 6\} = \emptyset$$
 and $Q(A): A \neq \emptyset$.

be open sentences over the domain $\mathcal{P}(S)$.

- (a) Determine all $A \in \mathcal{P}(S)$ for which $\mathcal{P}(A) \land \mathcal{Q}(A)$ is true.
- (b) Determine all $A \in \mathcal{P}(S)$ for which $P(A) \vee (\sim Q(A))$ is true.
- (c) Determine all $A \in \mathcal{P}(S)$ for which $(\sim P(A)) \land (\sim Q(A))$ is true.

Section 2.4: The Implication

- 2.14. Consider the statements P : 17 is even and Q : 19 is prime. Write each of the following statements in words, and indicate whether it is true or false.
 (a) ~ P (b) P ∨ Q (c) P ∧ Q (d) P ⇒ Q.
- 2.15. For statements P and Q, construct a truth table for $(P \Rightarrow Q) \Rightarrow (\sim P)$.
- 2.16. Consider the statements P: √2 is rational and Q: 22/7 is rational. Write each of the following statements in words and indicate whether it is true or false.
 (a) P ⇒ Q
 (b) Q ⇒ P
 (c) (~P) ⇒ (~Q)
 (d) (~Q) ⇒ (~P).
- 2.17. Consider the statements:

 $P:\sqrt{2}$ is rational, $Q:\frac{2}{3}$ is rational, $R:\sqrt{3}$ is rational.

Write each of the following statements in words and indicate whether the statement is true or false.

(a) $(P \land Q) \Rightarrow R$ (b) $(P \land Q) \Rightarrow (\sim R)$

(c) $((\sim P) \land Q) \Rightarrow R$

(d) $(P \lor Q) \Rightarrow (\sim R)$.

Section 2.5: More on Implications

- 2.18. Consider the open sentences P(n): 5n + 3 is prime and Q(n): 7n + 1 is prime over the domain N.
 - (a) State $P(n) \Rightarrow Q(n)$ in words.
 - (b) State $P(2) \Rightarrow Q(2)$ in words. Is this statement true or false?
 - (c) State $P(6) \Rightarrow Q(6)$ in words. Is this statement true or false?
- 2.19. In each of the following, two open sentences P(x) and Q(x) over a domain S are given. Determine the truth value of $P(x) \Rightarrow Q(x)$ for each $x \in S$.
 - (a) $P(x): |x| = 4; Q(x): x = 4; S = \{-4, -3, 1, 4, 5\}.$
 - (b) $P(x): x^2 = 16; Q(x): |x| = 4; S = \{-6, -4, 0, 3, 4, 8\}.$
 - (c) $P(x): x > 3; Q(x): 4x 1 > 12; S = \{0, 2, 3, 4, 6\}.$
- 2.20. In each of the following, two open sentences P(x) and Q(x) over a domain S are given. Determine all $x \in S$ for which $P(x) \Rightarrow Q(x)$ is a true statement.
 - (a) $P(x): x 3 = 4; Q(x): x \ge 8; S = \mathbf{R}.$
 - (b) $P(x): x^2 \ge 1; Q(x): x \ge 1; S = \mathbf{R}.$
 - (c) $P(x): x^2 \ge 1; \quad Q(x): x \ge 1; \quad S = \mathbf{N}.$
 - (d) $P(x): x \in [-1, 2]; Q(x): x^2 \le 2; S = [-1, 1].$
- 2.21. In each of the following, two open sentences P(x, y) and Q(x, y) are given, where the domain of both x and y is Z. Determine the truth value of $P(x, y) \Rightarrow Q(x, y)$ for the given values of x and y.
 - (a) $P(x, y) : x^2 y^2 = 0$ and Q(x, y) : x = y. (x, y) $\in \{(1, -1), (3, 4), (5, 5)\}.$
 - (b) P(x, y) : |x| = |y| and Q(x, y) : x = y. (x, y) $\in \{(1, 2), (2, -2), (6, 6)\}.$
 - (c) $P(x, y) : x^2 + y^2 = 1$ and Q(x, y) : x + y = 1. (x, y) $\in \{(1, -1), (-3, 4), (0, -1), (1, 0)\}.$

Section 2.6: The Biconditional

2.22. Let P : 18 is odd and Q : 25 is even. State $P \Leftrightarrow Q$ in words. Is $P \Leftrightarrow Q$ true or false?

2.23. Consider the open sentences:

$$P(x): x = -2$$
 and $Q(x): x^2 = 4$.

over the domain $S = \{-2, 0, 2\}$. State each of the following in words and determine all values of $x \in S$ for which the resulting statements are true.

- (a) $\sim P(x)$ (b) $P(x) \lor Q(x)$ (c) $P(x) \land Q(x)$ (d) $P(x) \Rightarrow Q(x)$ (e) $Q(x) \Rightarrow P(x)$ (f) $P(x) \Leftrightarrow Q(x)$.
- 2.24. For the following open sentences P(x) and Q(x) over a domain S, determine all values of $x \in S$ for which the biconditional $P(x) \Leftrightarrow Q(x)$ is true.
 - (a) $P(x): |x| = 4; Q(x): x = 4; S = \{-4, -3, 1, 4, 5\}.$
 - (b) $P(x): x \ge 3; Q(x): 4x 1 > 12; S = \{0, 2, 3, 4, 6\}.$
 - (c) $P(x): x^2 = 16; Q(x): x^2 4x = 0; S = \{-6, -4, 0, 3, 4, 8\}.$
- 2.25. Let P(x) : x is odd. and $Q(x) : x^2$ is odd. be open sentences over the domain Z. State $P(x) \Leftrightarrow Q(x)$ in two ways: (1) using "if and only if" and (2) using "necessary and sufficient".
- 2.26. For the open sentences P(x) : |x 3| < 1 and $Q(x) : x \in (2, 4)$. over the domain **R**, state the biconditional $P(x) \Leftrightarrow Q(x)$ in two different ways.

- 2.27. In each of the following, two open sentences P(x, y) and Q(x, y) are given, where the domain of both x and y is **Z**. Determine the truth value of $P(x, y) \Leftrightarrow Q(x, y)$ for the given values of x and y.
 - (a) $P(x, y) : x^2 y^2 = 0$ and Q(x, y) : x = y. (x, y) $\in \{(1, -1), (3, 4), (5, 5)\}.$
 - (b) P(x, y) : |x| = |y| and Q(x, y) : x = y. (x, y) $\in \{(1, 2), (2, -2), (6, 6)\}.$
 - (c) $P(x, y) : x^2 + y^2 = 1$ and Q(x, y) : x + y = 1. (x, y) $\in \{(1, -1), (-3, 4), (0, -1), (1, 0)\}.$
- 2.28. Let $S = \{1, 2, 3\}$. Consider the following open sentences over the domain S:

$$P(n): \frac{(n+4)(n+5)}{2} \text{ is odd.}$$
$$Q(n): 2^{n-2} + 3^{n-2} + 6^{n-2} > (2.5)^{n-1}.$$

Determine three distinct elements a, b, c in S such that $P(a) \Rightarrow Q(a)$ is false, $Q(b) \Rightarrow P(b)$ is false, and $P(c) \Leftrightarrow Q(c)$ is true.

2.29. Let $S = \{1, 2, 3, 4\}$. Consider the following open sentences over the domain S:

$$P(n): \frac{n(n-1)}{2} \text{ is even.} Q(n): 2^{n-2} - (-2)^{n-2} \text{ is even.} R(n): 5^{n-1} + 2^n \text{ is prime.}$$

Determine four distinct elements a, b, c, d in S such that

(i) $P(a) \Rightarrow Q(a)$ is false; (ii) $Q(b) \Rightarrow P(b)$ is true; (iii) $P(c) \Leftrightarrow R(c)$ is true; (iv) $Q(d) \Leftrightarrow R(d)$ is false.

Section 2.7: Tautologies and Contradictions

2.30. For statements P and Q, show that $P \Rightarrow (P \lor Q)$ is a tautology.

- 2.31. For statements P and Q, show that $(P \land \sim Q) \land (P \land Q)$ is a contradiction.
- 2.32. For statements P and Q, show that $(P \land (P \Rightarrow Q)) \Rightarrow Q$ is a tautology. Then state $(P \land (P \Rightarrow Q)) \Rightarrow Q$ in words. (This is an important logical argument form, called **modus ponens**.)
- 2.33. For statements P, Q, and R, show that $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ is a tautology. Then state this compound statement in words. (This is another important logical argument form, called **syllogism**.)

Section 2.8: Logical Equivalence

- 2.34. For statements P and Q, the implication $(\sim P) \Rightarrow (\sim Q)$ is called the **inverse** of the implication $P \Rightarrow Q$.
 - (a) Use a truth table to show that these statements are not logically equivalent.
 - (b) Find another implication that is logically equivalent to $\sim P \Rightarrow \sim Q$ and verify your answer.
- 2.35. Let P and Q be statements.
 - (a) Is $\sim (P \lor Q)$ logically equivalent to $(\sim P) \lor (\sim Q)$? Explain.
 - (b) What can you say about the biconditional $\sim (P \lor Q) \Leftrightarrow ((\sim P) \lor (\sim Q))$?
- 2.36. For statements P, Q, and R, use a truth table to show that each of the following pairs of statements are logically equivalent.
 - (a) $(P \land Q) \Leftrightarrow P$ and $P \Rightarrow Q$.
 - (b) $P \Rightarrow (Q \lor R)$ and $(\sim Q) \Rightarrow ((\sim P) \lor R)$.
- 2.37. For statements P and Q, show that $(\sim Q) \Rightarrow (P \land (\sim P))$ and Q are logically equivalent.

62 Chapter 2 Logic

2.38. For statements P, Q, and R, show that $(P \lor Q) \Rightarrow R$ and $(P \Rightarrow R) \land (Q \Rightarrow R)$ are logically equivalent.

Section 2.9: Some Fundamental Properties of Logical Equivalence

- 2.39. Verify the following laws stated in Theorem 2.18:
 - (a) Let P, Q, and R be statements. Then

 $P \lor (Q \land R)$ and $(P \lor Q) \land (P \lor R)$ are logically equivalent.

(b) Let P and Q be statements. Then

 $\sim (P \lor Q)$ and $(\sim P) \land (\sim Q)$ are logically equivalent.

- 2.40. Write negations of the following open sentences:
 - (a) Either x = 0 or y = 0.
 - (b) The integers *a* and *b* are both even.
- 2.41. Consider the implication: If x and y are even, then xy is even.
 - (a) State the implication using "only if".
 - (b) State the converse of the implication.
 - (c) State the implication as a disjunction (see Theorem 2.17).
 - (d) State the negation of the implication as a conjunction (see Theorem 2.21(a)).
- 2.42. For a real number x, let $P(x) : x^2 = 2$ and $Q(x) : x = \sqrt{2}$. State the negation of the biconditional $P \Leftrightarrow Q$ in words (see Theorem 2.21(b)).

Section 2.10: Quantified Statements

2.43. Let S denote the set of odd integers, and let

 $P(x): x^2 + 1$ is even. and $Q(x): x^2$ is even.

be open sentences over the domain S. State $\forall x \in S, P(x)$ and $\exists x \in S, Q(x)$ in words.

- 2.44. Define an open sentence R(x) over some domain S and then state $\forall x \in S, R(x)$ and $\exists x \in S, R(x)$ in words.
- 2.45. State the negations of the following quantified statements, where all sets are subsets of some universal set U:
 - (a) For every set $A, A \cap \overline{A} = \emptyset$.
 - (b) There exists a set A such that $\overline{A} \subseteq A$.
- 2.46. State the negations of the following quantified statements:
 - (a) For every rational number r, the number 1/r is rational.
 - (b) There exists a rational number r such that $r^2 = 2$.
- 2.47. Let P(n): (5n-6)/3 is an integer. be an open sentence over the domain **Z**. Determine, with explanations, whether the following statements are true:
 - (a) $\forall n \in \mathbb{Z}, P(n)$.
 - (b) $\exists n \in \mathbb{Z}, P(n).$
- 2.48. Determine the truth value of each of the following statements.
 - (a) $\exists x \in \mathbf{R}, x^2 x = 0.$
 - (b) $\forall n \in \mathbb{N}, n + 1 \ge 2$.
 - (c) $\forall x \in \mathbf{R}, \sqrt{x^2} = x$.
 - (d) $\exists x \in \mathbf{Q}, 3x^2 27 = 0.$

- (e) $\exists x \in \mathbf{R}, \exists y \in \mathbf{R}, x + y + 3 = 8$.
- (f) $\forall x, y \in \mathbf{R}, x + y + 3 = 8$.
- (g) $\exists x, y \in \mathbf{R}, x^2 + y^2 = 9$.
- (h) $\forall x \in \mathbf{R}, \forall y \in \mathbf{R}, x^2 + y^2 = 9.$

2.49. The statement

For every integer m, either $m \le 1$ or $m^2 \ge 4$.

can be expressed using a quantifier as:

$$\forall m \in \mathbb{Z}, m \leq 1 \text{ or } m^2 \geq 4.$$

Do this for the statements in parts (a) and (b).

- (a) There exist integers a and b such that both ab < 0 and a + b > 0.
- (b) For all real numbers x and y, $x \neq y$ implies that $x^2 + y^2 > 0$.
- (c) Express in words the negations of the statements in (a) and (b).
- (d) Using quantifiers, express in symbols the negations of the statements in both (a) and (b).
- 2.50. Consider the open sentence

$$P(x, y, z): (x - 1)^{2} + (y - 2)^{2} + (z - 2)^{2} > 0.$$

where the domain of each of the variables x, y and z is **R**.

- (a) Express the quantified statement $\forall x \in \mathbf{R}, \forall y \in \mathbf{R}, \forall z \in \mathbf{R}, P(x, y, z)$ in words.
- (b) Is the quantified statement in (a) true or false? Explain.
- (c) Express the negation of the quantified statement in (a) in symbols.
- (d) Express the negation of the quantified statement in (a) in words.
- (e) Is the negation of the quantified statement in (a) true or false? Explain.
- 2.51. Consider the quantified statement

For every $s \in S$ and $t \in S$, st - 2 is prime.

where the domain of the variables s and t is $S = \{3, 5, 11\}$.

- (a) Express this quantified statement in symbols.
- (b) Is the quantified statement in (a) true or false? Explain.
- (c) Express the negation of the quantified statement in (a) in symbols.
- (d) Express the negation of the quantified statement in (a) in words.
- (e) Is the negation of the quantified statement in (a) true or false? Explain.

Section 2.11: Characterizations of Statements

- 2.52. Give a definition of each of the following, and then state a characterization of each.
 - (a) two lines in the plane are perpendicular
 - (b) a rational number
- 2.53. Define an integer n to be odd if n is not even. State a characterization of odd integers.
- 2.54. Define a triangle to be isosceles if it has two equal sides. Which of the following statements are characterizations of isosceles triangles? If a statement is not a characterization of isosceles triangles, then explain why.
 - (a) If a triangle is equilateral, then it is isosceles.
 - (b) A triangle T is isosceles if and only if T has two equal sides.

64 Chapter 2 Logic

- (c) If a triangle has two equal sides, then it is isosceles.
- (d) A triangle T is isosceles if and only if T is equilateral.
- (e) If a triangle has two equal angles, then it is isosceles.
- (f) A triangle T is isosceles if and only if T has two equal angles.
- 2.55. By definition, a right triangle is a triangle one of whose angles is a right angle. Also, two angles in a triangle are complementary if the sum of their degrees is 90°. Which of the following statements are characterizations of a right triangle? If a statement is not a characterization of a right triangle, then explain why.
 - (a) A triangle is a right triangle if and only if two of its sides are perpendicular.
 - (b) A triangle is a right triangle if and only if it has two complementary angles.
 - (c) A triangle is a right triangle if and only if its area is half of the product of the lengths of some pair of its sides.
 - (d) A triangle is a right triangle if and only if the square of the length of its longest side equals the sum of the squares of the lengths of the two smallest sides.
 - (e) A triangle is a right triangle if and only if twice the area of the triangle equals the area of some rectangle.

ADDITIONAL EXERCISES FOR CHAPTER 2

- 2.56. Construct a truth table for $P \land (Q \Rightarrow \sim P)$.
- 2.57. Given that the implication $(Q \lor R) \Rightarrow \sim P$ is false and Q is false, determine the truth values of R and P.
- 2.58. Find a compound statement involving the component statements P and Q that has the truth table given in Figure 2.18.
- 2.59. Determine the truth value of each of the following quantified statements:
 - (a) $\exists x \in \mathbf{R}, x^2 x = 0.$
 - (b) $\forall n \in \mathbb{N}, n+1 \ge 2$.
 - (c) $\forall x \in \mathbf{R}, \sqrt{x^2} = x$.
 - (d) $\exists x \in \mathbf{Q}, \frac{1}{r^2} = \frac{1}{2}$.
 - (e) $\exists x, y \in \mathbf{R}, x + y + 3 = 8$.
 - (f) $\forall x, y \in \mathbf{R}, x + y + 3 = 8$.

2.60. Rewrite each of the implications below using (1) only if and (2) sufficient.

- (a) If a function f is differentiable, then f is continuous.
- (b) If x = -5, then $x^2 = 25$.

Р	Q	$\sim Q$	
T	Т	F	T
\overline{T}	F	T	T
F	T	\overline{F}	F
F	F	Т	T

Figure 2.18 Truth table for Exercise 2.58.

2.61. Let

$$P(n): n^2 - n + 5$$
 is a prime.

be an open sentence over a domain S.

- (a) Determine the truth values of the quantified statements $\forall n \in S, P(n) \text{ and } \exists n \in S, \sim P(n) \text{ for } S = \{1, 2, 3, 4\}.$
- (b) Determine the truth values of the quantified statements $\forall n \in S, P(n) \text{ and } \exists n \in S, \sim P(n) \text{ for } S = \{1, 2, 3, 4, 5\}.$
- (c) How are the statements in (a) and (b) related?
- 2.62. (a) For statements P, Q, and R, show that

$$((P \land Q) \Rightarrow R) \equiv ((P \land (\sim R)) \Rightarrow (\sim Q)).$$

(b) For statements P, Q, and R, show that

$$((P \land Q) \Rightarrow R) \equiv (Q \land (\sim R) \Rightarrow (\sim P)).$$

2.63. For a fixed integer *n*, use Exercise 2.62 to restate the following implication in two different ways:

If *n* is a prime and n > 2, then *n* is odd.

2.64. For fixed integers m and n, use Exercise 2.62 to restate the following implication in two different ways:

If m is even and n is odd, then m + n is odd.

2.65. For a real valued function f and a real number x, use Exercise 2.62 to restate the following implication in two different ways:

If
$$f'(x) = 3x^2 - 2x$$
 and $f(0) = 4$, then $f(x) = x^3 - x^2 + 4$.

- 2.66. For the set S = {1, 2, 3}, give an example of three open sentences P(n), Q(n), and R(n), each over the domain S, such that (1) each of P(n), Q(n), and R(n) is a true statement for exactly two elements of S, (2) all of the implications P(1) ⇒ Q(1), Q(2) ⇒ R(2), and R(3) ⇒ P(3) are true, and (3) the converse of each implication in (2) is false.
- 2.67. Do there exist a set S of cardinality 2 and a set $\{P(n), Q(n), R(n)\}$ of three open sentences over the domain S such that the implications $P(a) \Rightarrow Q(a), Q(b) \Rightarrow R(b)$, and $R(c) \Rightarrow P(c)$ are true, where $a, b, c \in S$, and (2) the converses of the implications in (1) are false? Necessarily, at least two of these elements a, b, and c of S are equal.
- 2.68. Let $A = \{1, 2, ..., 6\}$ and $B = \{1, 2, ..., 7\}$. For $x \in A$, let P(x) : 7x + 4 is odd. For $y \in B$, let Q(y) : 5y + 9 is odd. Let

$$S = \{ (P(x), Q(y)) : x \in A, y \in B, P(x) \Rightarrow Q(y) \text{ is false} \}.$$

What is |S|?

65