1. (20\%) Express the following compound statement in terms of just conjunction and negation:

$$
(P \vee Q) \rightarrow R
$$

2. (20%) On the island of Knights and Knaves, you meet three friends, Karl, Lars, and Mark. You know that one of them is a knight, one is a knave, and one is a tourist. They make the following statements.
Karl:"Mark is a knave."
Lars: "Karl is a knight."
Mark: "I am a tourist."
Is it possible to determine from this information who is what?
3. (20%) Let $A=\emptyset, B=\{1\}, C=\{\emptyset, 1,2\}$. List all elements of the following sets.
(a) $A \cup C$
(b) $C \cap \bar{B}$
(c) $\mathcal{P}(B)$
(d) $\mathcal{P}(B) \times C$
4. (40%) For each of the following statements, determine its truth value. Provide a proof.
(a) $\exists x, y \in \mathbb{N} x^{3}+y^{3}=7$
(b) $\exists x, y \in \mathbb{Z} x^{3}+y^{3}=7$
(c) $\forall x \in \mathbb{R} \exists y \in \mathbb{R} x^{3}+y^{3}=7$
(d) $\exists y \in \mathbb{R} \forall x \in \mathbb{R} x^{3}+y^{3}=7$
(e) $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} x^{3}+y^{3}=7$
(f) $\exists!x \in \mathbb{R} \exists!y \in \mathbb{R} x^{3}+y^{3}=7$
(g) $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} x y=7$
(h) $\exists x \exists y \in \mathbb{Z} \forall z \in \mathbb{Z} x+y z=7$
