1. Let $U=\{a, b, c, d, e, f, g\}$, and let f be an interpretation of formulas with P, Q, and R in U defined by $f(P)=\{a, b, c\}, f(Q)=\{c, d, e\}, f(R)=\{b, d, f\}$. Find the following.
(a) $f(\neg R)$
(b) $f(P \wedge Q)$
(c) $f(P \vee Q \vee R)$
(d) $f(P \rightarrow R)$
2. For the above interpretation $(U=\{a, b, c, d, e, f, g\}, f(P)=\{a, b, c\}, f(Q)=$ $\{c, d, e\}, f(R)=\{b, d, f\})$:
(a) Find a compound statement that is mapped to the whole set U but is not a tautology.
(b) Also find a compound statement that is mappted to the empty subset but is not a contradiction.
3. Let $U=\{1\}$ (containing just one element).
(a) The compound statement $P \rightarrow Q$ is not a tautology, therefore there exists an interpretation that sends $P \rightarrow Q$ to a proper subset of U, i.e. the empty set. Find an interpretation that sends $P \rightarrow Q$ to the empty subset.
(b) On the other hand, the compound statement $P \rightarrow Q$ is not a contradiction, therefore there exists an interpretation that sends $P \rightarrow Q$ to a non-empty subset of U, i.e. the whole set U. Find an interpretation that sends $P \rightarrow Q$ to U.
4. Recall that \mathbb{N} denotes the set of natural numbers (positive integers) and \mathbb{R} denotes the set of all real numbers. Also let $S=\{-1,1\}$. Determine the truth value of the following statements. Provide a brief justification.
(a) $\forall x \in S x^{2}=1$
(b) $\forall x \in \mathbb{R} x^{2}=1$
(c) $\forall x \in \mathbb{N} x^{2}>0$
(d) $\forall x \in \mathbb{R} x^{2}>0$
5. Recall also that \mathbb{Z} denotes the set of integer numbers. Determine the truth value of the following statements.
(a) $\exists x \in S x^{2}=3$
(b) $\exists x \in \mathbb{N} x^{2}=3$
(c) $\exists x \in \mathbb{Z} x^{2}=3$
(d) $\exists x \in \mathbb{R} x^{2}=3$
