
MATH 110 Lecture notes – 3

Expressing some operations in terms of
others revisited.

Recall the following from a previous lecture.

From the six operations ¬, ∧, ∨, ⊕, →, ↔, some operations can be ex-
pressed in terms of others. For example,

P → Q ≡ ¬P ∨Q.

Also, it can be checked using the truth tables that

P ∧Q ≡ ¬(¬P ∨ ¬Q),

P ∨Q ≡ ¬(¬P ∧ ¬Q),

P ⊕Q ≡ (P ∧ ¬Q) ∨ (¬P ∧Q),

P↔Q ≡ (P ∧Q) ∨ (¬P ∧ ¬Q).

Observations made earlier:

1. Any operation can be defined in terms of ∧, ∨, and ¬.

2. Since ∧ can be defined in terms of ∨ and ¬, any operation can be
defined in terms of these two.

3. Since ∨ can be defined in terms of ∧ and ¬, any operation can be
defined in terms of these two as well.

Old questions and new answers:

1. Can ¬ be defined in terms of ∧ and ∨?

Answer: no. If this were possible, we would have an expression that
contains only variables, ∧, and ∨, and is logically equvalent to ¬P .
However, when constructing a truth table for such an expression, we
would only have the value T in the first line, where each variable has
the value T. So, it is not possible to get an F in that line, therefore the
expression cannot be logically equivalent to ¬P .

2. Can ∧ and ∨ be defined in terms of → and ¬? If so, how? If not,
explain why not.

Answer: yes. Since P → Q ≡ ¬P ∨ Q, replacing P with ¬P and

1



eliminating the double negation, we have:

P ∨Q ≡ ¬P → Q.

Applying negation to both sides of this gives

¬(P ∨Q) ≡ ¬(¬P → Q).

Using DeMorgan’s law,

¬P ∧ ¬Q ≡ ¬(¬P → Q).

Finally, replace P with ¬P and Q with ¬Q, and eliminate the double
negation to obtain:

P ∧Q ≡ ¬(P → ¬Q).

3. Can any formula be expressed in terms of just ∧? Just ∨? Just ¬?
Just →? Just ↔? Just ⊕?

Answer: no.

• ¬ is insufficient because it cannot connect two variables.

• ∧, ∨, →, and ↔ always will give the truth value T when each
variable has the value T, therefore cannot express negation.

• ⊕ will always give the value F when each variable has the value
F, therefore cannot express ↔.

4. Can any formula be expressed in terms of just one operation? If so, in
terms of which one(s)?
Answer: yes. There are two such operations, namely,

P ↑ Q = ¬(P ∧ P )

and
P ↓ Q = ¬(P ∨Q).

First let’s show that these operations ↑ and ↓ are the only binary oper-
ations that could possibly be capable of expressing all other operations.

• To express negation, the value of the operation for P =T and
Q =T must be F.

P Q P operation Q

T T F
T F
F T
F F

2



• To express biconditional, the value of the operation for P =F and
Q =F must be T.

P Q P operation Q

T T F
T F
F T
F F T

• If the values of the operation at P =T, Q =F and at P =F, Q =T
are T and F respectively, then the operation is equivalent to ¬Q,
while if the values of the operation at P =T, Q =F and at P =F,
Q =T are F and T respectively, then the operation is equivalent
to ¬P . We already know that ¬ cannot express other operations.

• Thus these two values should be either both T or both F. In the
first case we get P ↑ Q (called nand, or alternative denial), and
in the second we get P ↓ Q (called nor, or joint denial):

P Q P ↑ Q

T T F
T F T
F T T
F F T

P Q P ↓ Q

T T F
T F F
F T F
F F T

Next we will show that all other operations can be expressed in terms
of ↑.
Observe that P ↑ P ≡ ¬(P ∧ P ) ≡ ¬P, so

¬P ≡ P ↑ P.

Then,

P ∧Q ≡ ¬(P ↑ Q)

≡ (P ↑ Q) ↑ (P ↑ Q)

and

P ∨Q ≡ ¬((¬P ) ∧ (¬Q))

≡ ¬((P ↑ P ) ∧ (Q ↑ Q))

≡ ¬
(

((P ↑ P ) ↑ (Q ↑ Q)) ↑ ((P ↑ P ) ↑ (Q ↑ Q))
)

≡
(

((P ↑ P ) ↑ (Q ↑ Q)) ↑ ((P ↑ P ) ↑ (Q ↑ Q))
)

↑
(

((P ↑ P ) ↑ (Q ↑ Q)) ↑ ((P ↑ P ) ↑ (Q ↑ Q))
)

.

Notice that
(A ↑ A) ↑ (A ↑ A) ≡ ¬¬A ≡ A,

3



so the above can be simplified:

P ∨Q ≡ (P ↑ P ) ↑ (Q ↑ Q).

Equivalently, using P ∧Q ≡ ¬(P ↑ Q), we could do the following:

P ∨Q ≡ ¬((¬P ) ∧ (¬Q))

≡ ¬(¬((¬P ) ↑ (¬Q)))

≡ (¬P ) ↑ (¬Q)

≡ (P ↑ P ) ↑ (Q ↑ Q).

Also,

P → Q ≡ ¬P ∨Q

≡ ¬(P ∧ ¬Q)

≡ ¬(P ∧ (Q ↑ Q))

≡ ¬((P ↑ (Q ↑ Q)) ↑ (P ↑ (Q ↑ Q)))

≡ ((P ↑ (Q ↑ Q)) ↑ (P ↑ (Q ↑ Q))) ↑ ((P ↑ (Q ↑ Q)) ↑ (P ↑ (Q ↑ Q)))

≡ P ↑ (Q ↑ Q).

Equivalently, using P ↑ A = ¬(P ∧ A), we could just do

P → Q ≡ ¬P ∨Q

≡ ¬(P ∧ ¬Q)

≡ ¬(P ∧ (Q ↑ Q))

≡ P ↑ (Q ↑ Q).

Remark. It can be shown that P → Q ≡ P ↑ (P ↑ Q) also, so
P ↑ (Q ↑ Q) ≡ P ↑ (P ↑ Q) is an identity for nand.
Next,

P↔Q ≡ (P → Q) ∧ (Q → P )

≡ (P ↑ (Q ↑ Q)) ∧ (Q ↑ (P ↑ P ))

≡ ((P ↑ (Q ↑ Q)) ↑ (Q ↑ (P ↑ P ))) ↑ ((P ↑ (Q ↑ Q)) ↑ (Q ↑ (P ↑ P ))).

Remark. It can also be shown that P↔Q ≡ (P ↑ Q) ↑ ((P ↑ P ) ↑ (Q ↑

Q)).

4



Finally,

P ⊕Q ≡ ¬(P↔Q)

≡ ¬((P → Q) ∧ (Q → P ))

≡ (P → Q) ↑ (Q → P )

≡ (P ↑ (Q ↑ Q)) ↑ (Q ↑ (P ↑ P )).

Exercise: express ¬, ∧, ∨, →, ↔, and ⊕ in terms of ↓.

Some properties of ↑ (where T denotes True and F denotes False):

• P ↑ Q ≡ Q ↑ P

• P ↑ T ≡ P ↑ P

• P ↑ F ≡ T

• P ↑ (P ↑ P ) ≡ T

• P ↑ (P ↑ Q) ≡ P ↑ (Q ↑ Q)

• (P ↑ P ) ↑ (P ↑ P ) ≡ P

Also, observe that

P ↓ Q ≡ ((P ↑ P ) ↑ (Q ↑ Q)) ↑ ((P ↑ P ) ↑ (Q ↑ Q))

5


