Similarities between logical and set operations

Observe that if in a logical equivalence containing only operations negation, conjunction, and disjunction, each negation is replaced by complement, each conjunction is replaced by intersection, each conjunction is replaced by union, each F is replaced by the emtpy set, and each T is replaced by the universal set, then a set identity is obtained. Identities involving implication and biconditional are a bit trickier and will be discussed below (in the last three items of the list below).

In the following identities, P, Q, and R are propositional variables, set U is the universal set, and A, B, and C are any subsets of U.

1. Commutative laws:

$$
\begin{array}{ll}
P \vee Q \equiv Q \vee P & A \cup B=B \cup A \\
P \wedge Q \equiv Q \wedge P & A \cap B=B \cap A
\end{array}
$$

2. Associative laws:

$$
\begin{array}{ll}
(P \vee Q) \vee R \equiv P \vee(Q \vee R) & (A \cup B) \cup C=A \cup(B \cup C) \\
(P \wedge Q) \wedge R \equiv P \wedge(Q \wedge R) & (A \cap B) \cap C=A \cap(B \cap C)
\end{array}
$$

3. Distributive laws:

$$
\begin{array}{ll}
P \vee(Q \wedge R) \equiv(P \vee Q) \wedge(P \vee R) & A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
P \wedge(Q \vee R) \equiv(P \wedge Q) \vee(P \wedge R) & A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{array}
$$

4. Idempotent laws:

$$
\begin{array}{ll}
P \vee P \equiv P & A \cup A=A \\
P \wedge P \equiv P & A \cap A=A
\end{array}
$$

5. Identity laws:

$$
\begin{array}{ll}
P \vee F \equiv P & A \cup \emptyset=A \\
P \wedge T \equiv P & A \cap U=A
\end{array}
$$

6. Inverse laws:

$$
\begin{array}{ll}
P \vee \neg P \equiv T & A \cup \bar{A}=U \\
P \wedge \neg P \equiv F & A \cap \bar{A}=\emptyset
\end{array}
$$

7. Domination laws:

$$
\begin{array}{ll}
P \vee T \equiv T & A \cup U=U \\
P \wedge F \equiv F & A \cap \emptyset=\emptyset
\end{array}
$$

8. Absorption laws:

$$
\begin{array}{ll}
P \vee(P \wedge Q) \equiv P & A \cup(A \cap B)=A \\
P \wedge(P \vee Q) \equiv P & A \cap(A \cup B)=A
\end{array}
$$

9. Double negation/double complement law:

$$
\neg(\neg P) \equiv P \quad \overline{(\bar{A})}=A
$$

10. DeMorgan's laws:

$$
\begin{array}{ll}
\neg(P \vee Q) \equiv(\neg P) \wedge(\neg Q) & \overline{A \cup B}=\bar{A} \cap \bar{B} \\
\neg(P \wedge Q) \equiv(\neg P) \vee(\neg Q) & \\
\overline{A \cap B}=\bar{A} \cup \bar{B}
\end{array}
$$

11. Implication identity:

$$
P \rightarrow Q \equiv(\neg P) \vee Q
$$

Since $P \rightarrow Q$ is false only when P is true and Q is false, and is true otherwise, considering the corresponding Venn diagram, we see that it corresponds to $\overline{A-B}$. Thus the above implication identity gives

$$
\overline{A-B}=\bar{A} \cup B
$$

This is equivalent to the following. Difference identity:

$$
A-B=A \cap \bar{B}
$$

12. Contrapositive identity:

$$
P \rightarrow Q \equiv(\neg Q) \rightarrow(\neg P)
$$

This gives

$$
\overline{A-B}=\overline{\bar{B}}-\overline{\bar{A}}
$$

which is equivalent to

$$
A-B=\bar{B}-\bar{A}
$$

13. Biconditional identities:

$$
\begin{gathered}
P \leftrightarrow Q \equiv(P \wedge Q) \vee((\neg P) \wedge(\neg Q)) \\
P \leftrightarrow Q \equiv(P \rightarrow Q) \wedge(Q \rightarrow P)
\end{gathered}
$$

The first identity gives

$$
\overline{(A-B) \cup(B-A)}=(A \cap B) \cup(\bar{A} \cap \bar{B})
$$

which is equivalent to

$$
\begin{aligned}
(A-B) \cup(B-A) & =\overline{A \cap B} \cap \overline{\bar{A} \cap \bar{B}} \\
& =(\bar{A} \cup \bar{B}) \cap(A \cup B)
\end{aligned}
$$

which gives the first of the symmetric difference identities below. Also,

$$
\begin{aligned}
P \leftrightarrow Q & \equiv(P \wedge Q) \vee((\neg P) \wedge(\neg Q)) \\
& \equiv \neg(P \vee Q) \vee(P \wedge Q) \\
& \equiv(P \vee Q) \rightarrow(P \wedge Q)
\end{aligned}
$$

gives

$$
\overline{(A-B) \cup(B-A)}=\overline{(A \cup B)-(A \cap B)}
$$

which implies the second of the symmetric difference identities below. Symmetric difference identities:

$$
\begin{aligned}
& (A-B) \cup(B-A)=(A \cup B) \cap(\bar{A} \cup \bar{B}) \\
& (A-B) \cup(B-A)=(A \cup B)-(A \cap B)
\end{aligned}
$$

