Interpretations of sormulas in sets

Interpretation.

Definition.

Suppose we have a set U (we think of it as the universal set) and a set of propositional variables such as $\{P, Q, R\}$. An interpretation of formulas (or expresssions, or compound statements) in U is a function f from the set of formulas in these variables to the power set of U (the set of all subsets of U) that satisfies the following properties: for any formulas F_{1} and F_{2},

1. $f\left(F_{1} \vee F_{2}\right)=f\left(F_{1}\right) \cup f\left(F_{2}\right)$,
2. $f\left(F_{1} \wedge F_{2}\right)=f\left(F_{1}\right) \cap f\left(F_{2}\right)$,
3. $f\left(\neg F_{1}\right)=\overline{f\left(F_{1}\right)}$.

Note that this function is completely determined by its values on the propositional variables.

Example.
Let $U=\{1,2,3,4,5\}$ and the set of variables be $\{P, Q, R\}$. Suppose
$f(P)=\{1,2,3\}=A, f(Q)=\{1,2\}=B$, and $f(R)=\{1,3,4\}=C$. Then:
$f(P \vee Q)=A \cup B=\{1,2,3\}$,
$f(\neg R)=\bar{C}=\{2,5\}$,
$f((P \vee Q) \wedge \neg R)=f(P \vee Q) \cap f(\neg R)=\{2\}$,
and so on. Each formula in P, Q, R, gets assigned a subset of U. This assignment of one subset of U to each formula is an interpretation of formulas in the set U.

Correspondence between lines in the truth table and regions in the Venn diagram.

Note: since F is used to denote the value False, to avoid confusion, we will always have indices for our formulas, e.g. F_{1}, F_{2}, etc. (Also note that different fonts are used for F (False) and F_{1} (a formula).
Given values (i.e. sets) of the propositional variables, e.g. $f(P)=A, f(Q)=$ B, etc., and a formula F_{1} in these propositional variables, constructing the Venn diagram for $f\left(F_{1}\right)$ mimics constructing a truth table for F_{1}. More precisely, we can write the formula F_{1} in the standard form using disjunction,
conjunction, and negation, namely, write F_{1} as the disjunction of expressions representing lines in the truth table where F_{1} has the truth value T. Notice that each line corresponds to a region in the Venn diagram, and $f\left(F_{1}\right)$ is the union of those regions corresponding to the lines where F_{1} is T .

Example.

Let $f(P)=A$ and $f(Q)=B$. We will draw a Venn diagram for $P \rightarrow Q$. First write $P \rightarrow Q$ as described above:

$$
P \rightarrow Q \equiv(P \wedge Q) \vee(\neg P \wedge Q) \vee(\neg P \wedge \neg Q)
$$

Here, the compound statements $P \wedge Q, \neg P \wedge Q$, and $\neg P \wedge \neg Q$ describe the three lines in the truth table where $P \rightarrow Q$ has the value of T :

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Then,
$f(P \wedge Q)=A \cap B \quad$ (region 1 in the Venn diagram below), $f(\neg P \wedge Q)=\bar{A} \cap B \quad$ (region 3 in the Venn diagram below), $f(\neg P \wedge \neg Q)=\bar{A} \cap \bar{B} \quad$ (region 4 in the Venn diagram below).

Therefore $f((P \wedge Q) \vee(\neg P \wedge Q) \vee(\neg P \wedge \neg Q))$ is the union of regions 1, 3, and 4.

Similarly, if we have 3 variables, the truth table has 8 lines and the Venn diagram has 8 regions, with each region corresponding to one line:

P	Q	R	corresponding region
T	T	T	1
T	T	F	2
T	F	T	3
T	F	F	4
F	T	T	5
F	T	F	6
F	F	T	7
F	F	F	8

In general, for n variables, there are 2^{n} lines in the truth table and 2^{n} regions in the Venn diagram that correspond to those lines.

Observation.

1. If a formula (compound statement) F_{1} is a tautology, then $f\left(F_{1}\right)=U$ for any interpretation (since all the regions in the Venn diagram will be shaded).
2. If a formula (compound statement) F_{1} is a contradiction, then $f\left(F_{1}\right)=$ \emptyset for any interpretation (since none of the regions in the Venn diagram will be shaded).

Example.

Let $U=\{1,2,3,4,5\}$ and the set of variables be $\{P, Q, R\}$. Suppose $f(P)=$ $\{1,2,3\}=A, f(Q)=\{1,2\}=B$.

The formulas $P \vee \neg P$ and $P \wedge \neg P$ are a tautology and a contradiction, respectively, therefore their image under f must be U and \emptyset, respectively.

Indeed,

$$
\begin{aligned}
f(P \vee \neg P) & =f(P) \cup f(\neg P) \\
& =f(P) \cup \overline{f(P)} \\
& =\{1,2,3\} \cup\{4,5\} \\
& =\{1,2,3,4,5\} \\
& =U
\end{aligned}
$$

and

$$
\begin{aligned}
f(P \wedge \neg P) & =f(P) \cap f(\neg P) \\
& =f(P) \cap \overline{f(P)} \\
& =\{1,2,3\} \cup\{4,5\} \\
& =\emptyset
\end{aligned}
$$

However, warning: sometimes $f\left(F_{1}\right)=U$, but F_{1} is not a tautology, or $f\left(F_{1}\right)=\emptyset$, but F_{1} is not a contradiction. For example, for the above interpretation,

$$
\begin{aligned}
f((P \wedge Q) \vee(P \wedge \neg Q) \vee(\neg P \wedge \neg Q)) & =f(P \wedge Q) \cup f(P \wedge \neg Q) \cup f(\neg P \wedge \neg Q) \\
& =\{1,2\} \cup\{3\} \cup\{4,5\} \\
& =\{1,2,3,4,5\} \\
& =U
\end{aligned}
$$

and

$$
f(\neg P \wedge Q)=\emptyset
$$

even though $(P \wedge Q) \vee(P \wedge \neg Q) \vee(\neg P \wedge \neg Q)$ is not a tautology and $\neg P \wedge Q$ is not a contradiction.

The reason for this happening is that region 3, corresponding to the scenario $\neg P \wedge Q$ (line 3 of the truth table, where $(P \wedge Q) \vee(P \wedge \neg Q) \vee(\neg P \wedge \neg Q)$ is false and $\neg P \wedge Q$ is true), is empty for our interpretation.

