May 15, 2006

Math 111 Final Exam – Solutions

1. Prove that for every odd integer n, $6n^2 + 5n + 4$ is odd.

If n is odd, then n = 2k+1 for some $k \in \mathbb{Z}$. Then $6n^2+5n+4 = 6(2k+1)^2+5(2k+1)+4 = 6(2k+1)^2+10k+5+4 = 6(2k+1)^2+10k+9 = 2(3(2k+1)^2+5k+4)+1$. Since $3(2k+1)^2+5k+4 \in \mathbb{Z}$, $6n^2+5n+4$ is odd.

2. Make truth tables for the following compound statements.

The truth tables are shown below.

(a) $Q \vee (R \wedge S)$

~)								
	Q	R	S	$R \wedge S$	$Q \lor (R \land S)$			
	Т	Т	Т	Т	Т			
	Т	Т	F	F	Т			
	Т	F	Т	F	Т			
	Т	F	F	F	Т			
	F	Т	Т	Т	Т			
	F	Т	F	F	F			
	F	F	Т	F	F			
	F	F	F	F	F			

(b) $(P \land (P \iff Q)) \land \sim Q$

/	`	 	• / /	•		
	P	Q	$P \iff Q$	$P \land (P \iff Q)$	$\sim Q$	$(P \land (P \iff Q)) \land \sim Q$
	Т	Т	Т	Т	F	F
	Т	F	F	F	Т	F
	F	Т	F	F	F	F
	F	F	Т	F	Т	F

- 3. Provide counterexamples to the following proposed (but false) statements.
 - (a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (x > 1 \land y > 0) \implies y^x > x.$ Let x = 2 and y = 1. Then $y^x = 1$, so $y^x \neq x$.
 - (b) For all positive integers $x, x^2 x + 11$ is a prime number. Let x = 11, then $x^2 - x + 11 = 11^2 - 11 + 11 = 11^2 = 11 \cdot 11$ is not prime.
- 4. A sequence $\{x_n\}$ is defined recursively by $x_1 = 1$, $x_2 = 2$, and $x_n = x_{n-1} + 2x_{n-2}$ for $n \ge 3$. Conjecture a formula for x_n and verify that your conjecture is correct.

First we find the first few terms: $x_1 = 1$, $x_2 = 2$, $x_3 = 4$, $x_4 = 8$, $x_5 = 16$. It appears that $x_n = 2^{n-1}$.

We will prove this conjecture by Strong Mathematical Induction.

Basis step: if n = 1, then $x_1 = 2^0$ is true.

Inductive step: assume that $x_i = 2^{i-1}$ for all i such that $1 \le i \le k$ for some $k \in \mathbb{N}$. We will prove that $x_{k+1} = 2^k$.

If k = 1, then $x_{k+1} = x_2 = 2 = 2^1$ is true. If $k \ge 2$, then $x_{k+1} = x_k + 2x_{k-1} = 2^{k-1} + 2 \cdot 2^{k-2} = 2^{k-1} + 2^{k-1} = 2^k$.

- 5. A relation R is defined on Z by x R y if $x \cdot y \ge 0$. Prove or disprove the following:
 - (a) R is reflexive, For any $x \in \mathbb{Z}$, $x \cdot x \ge 0$, so x R x. Thus R is reflexive.
 - (b) R is symmetric, If x R y, then $x \cdot y \ge 0$. Then $y \cdot x \ge 0$, so y R x. Thus R is symmetric.
 - (c) R is transitive. Since $-1 \cdot 0 \ge 0$ and $0 \cdot 1 \ge 0$, but $-1 \cdot 1 \ge 0$, we have that -1 R 0, 0 R 1, but -1 R 1. Thus R is not transitive.
- 6. Let A, B, and C be sets.
 - (a) Prove that A ⊆ B iff A B = Ø.
 (⇒) We will prove this direction by contrapositive. Let A B ≠ Ø. Then there exists x ∈ A B. Since x ∈ A and x ∉ B, it follows that A ⊈ B.
 (⇐) We will prove this by contrapositive again. Let A ⊈ B. Then there exists x ∈ A such that x ∉ B. Then x ∈ A B, therefore A B ≠ Ø.
 - (b) Prove that if $A \subseteq B \cup C$ and $A \cap B = \emptyset$, then $A \subseteq C$. Let $x \in A$. Since $A \subseteq B \cup C$, $x \in B \cup C$. Therefore $x \in B$ or $x \in C$. Since $A \cap B = \emptyset$ and $x \in A$, $x \notin B$. Thus $x \in C$.
- 7. Prove that $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x+4 & \text{if } x \le -2 \\ -x & \text{if } -2 < x < 2 \\ x-4 & \text{if } x \ge 2 \end{cases}$$

is onto \mathbb{R} but not one-to-one. (*Hint:* Try to graph this function; this will help you see how to prove what you need to prove.)

The function f is not one-to-one because f(0) = 0 = 4 - 4 = f(4) but $0 \neq 4$.

It remains to show that f is onto. Let $y \in \mathbb{R}$. We will consider the following two cases.

Case I: $y \ge 0$. Let x = y + 4, then $x \ge 2$, so f(x) = x - 4 = y + 4 - 4 = y.

Case II: y < 0. Let x = y - 4, then $x \le -2$, so f(x) = x + 4 = y - 4 + 4 = y.

Extra Credit

Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a function given by $f((m, n)) = 2^{m-1}(2n - 1)$. Is f one-to-one? Is f onto?

We will prove that f is both one-to-one and onto.

Let f((m, n)) = f((p, q)). Since 2n - 1 and 2q - 1 are odd, the highest powers of 2 that divide f((m, n)) and f((p, q)) are 2^{m-1} and 2^{p-1} respectively. Since f((m, n)) = f((p, q)), $2^{m-1} = 2^{p-1}$. It follows that m - 1 = p - 1, so m = p. Since 2^{m-1} and 2^{p-1} are powers of two, the largest odd numbers that divide f((m, n)) and f((p, q)) are 2n - 1 and 2p - 1 respectively, so we also have 2n - 1 = 2p - 1. It follows that n = p. So (m, n) = (p, q). Thus f is one-to-one.

Let $r \in \mathbb{N}$. Let 2^k be the largest power of 2 that divides r. Then $r = 2^k l$ where $l \in \mathbb{N}$, l is odd. Then l = 2x + 1 for some $x \in \mathbb{Z}$. Let m = k + 1 and n = x + 1. Then k = m - 1 and l = 2x + 1 = 2(n - 1) + 1 = 2n - 1. Therefore $r = 2^{m-1}(2n - 1)$. Since $k \in \mathbb{Z}$ and $k \ge 0$, we have $m \in \mathbb{N}$ and since l > 1, x > 0, so $n \in \mathbb{N}$. Thus the number r is in the image, so f is onto.