
Math 111 May 15, 2006
Final Exam – Solutions

1. Prove that for every odd integer n, 6n2 + 5n + 4 is odd.

If n is odd, then n = 2k+1 for some k ∈ Z. Then 6n2+5n+4 = 6(2k+1)2+5(2k+1)+4 =
6(2k + 1)2 + 10k + 5 + 4 = 6(2k + 1)2 + 10k + 9 = 2(3(2k + 1)2 + 5k + 4) + 1. Since
3(2k + 1)2 + 5k + 4 ∈ Z, 6n2 + 5n + 4 is odd.

2. Make truth tables for the following compound statements.

The truth tables are shown below.

(a) Q ∨ (R ∧ S)

Q R S R ∧ S Q ∨ (R ∧ S)
T T T T T
T T F F T
T F T F T
T F F F T
F T T T T
F T F F F
F F T F F
F F F F F

(b) (P ∧ (P ⇐⇒ Q))∧ ∼ Q

P Q P ⇐⇒ Q P ∧ (P ⇐⇒ Q) ∼ Q (P ∧ (P ⇐⇒ Q))∧ ∼ Q
T T T T F F
T F F F T F
F T F F F F
F F T F T F

3. Provide counterexamples to the following proposed (but false) statements.

(a) ∀x ∈ R,∀y ∈ R, (x > 1 ∧ y > 0) =⇒ yx > x.

Let x = 2 and y = 1. Then yx = 1, so yx 6> x.

(b) For all positive integers x, x2 − x + 11 is a prime number.

Let x = 11, then x2 − x + 11 = 112 − 11 + 11 = 112 = 11 · 11 is not prime.

4. A sequence {xn} is defined recursively by x1 = 1, x2 = 2, and xn = xn−1 +2xn−2 for n ≥ 3.
Conjecture a formula for xn and verify that your conjecture is correct.

First we find the first few terms: x1 = 1, x2 = 2, x3 = 4, x4 = 8, x5 = 16. It appears that
xn = 2n−1.

We will prove this conjecture by Strong Mathematical Induction.

Basis step: if n = 1, then x1 = 20 is true.

Inductive step: assume that xi = 2i−1 for all i such that 1 ≤ i ≤ k for some k ∈ N. We
will prove that xk+1 = 2k.

If k = 1, then xk+1 = x2 = 2 = 21 is true.

If k ≥ 2, then xk+1 = xk + 2xk−1 = 2k−1 + 2 · 2k−2 = 2k−1 + 2k−1 = 2k.
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5. A relation R is defined on Z by x R y if x · y ≥ 0. Prove or disprove the following:

(a) R is reflexive,

For any x ∈ Z, x · x ≥ 0, so x R x. Thus R is reflexive.

(b) R is symmetric,

If x R y, then x · y ≥ 0. Then y · x ≥ 0, so y R x. Thus R is symmetric.

(c) R is transitive.

Since −1 · 0 ≥ 0 and 0 · 1 ≥ 0, but −1 · 1 6≥ 0, we have that −1 R 0, 0 R 1, but
−1 6R 1. Thus R is not transitive.

6. Let A,B, and C be sets.

(a) Prove that A ⊆ B iff A−B = Ø.

(⇒) We will prove this direction by contrapositive. Let A−B 6= Ø. Then there exists
x ∈ A−B. Since x ∈ A and x 6∈ B, it follows that A 6⊆ B.

(⇐) We will prove this by contrapositive again. Let A 6⊆ B. Then there exists x ∈ A
such that x 6∈ B. Then x ∈ A−B, therefore A−B 6= Ø.

(b) Prove that if A ⊆ B ∪ C and A ∩B = Ø, then A ⊆ C.

Let x ∈ A. Since A ⊆ B∪C, x ∈ B∪C. Therefore x ∈ B or x ∈ C. Since A∩B = Ø
and x ∈ A, x 6∈ B. Thus x ∈ C.

7. Prove that f : R→ R given by

f(x) =





x + 4 if x ≤ −2
−x if − 2 < x < 2
x− 4 if x ≥ 2

is onto R but not one-to-one. (Hint: Try to graph this function; this will help you see how
to prove what you need to prove.)

The function f is not one-to-one because f(0) = 0 = 4− 4 = f(4) but 0 6= 4.

It remains to show that f is onto. Let y ∈ R. We will consider the following two cases.

Case I: y ≥ 0. Let x = y + 4, then x ≥ 2, so f(x) = x− 4 = y + 4− 4 = y.

Case II: y < 0. Let x = y − 4, then x ≤ −2, so f(x) = x + 4 = y − 4 + 4 = y.

Extra Credit

Let f : N × N → N be a function given by f((m,n)) = 2m−1(2n − 1). Is f one-to-one? Is f
onto?

We will prove that f is both one-to-one and onto.
Let f((m,n)) = f((p, q)). Since 2n−1 and 2q−1 are odd, the highest powers of 2 that divide

f((m,n)) and f((p, q)) are 2m−1 and 2p−1 respectively. Since f((m,n)) = f((p, q)), 2m−1 = 2p−1.
It follows that m− 1 = p− 1, so m = p. Since 2m−1 and 2p−1 are powers of two, the largest odd
numbers that divide f((m,n)) and f((p, q)) are 2n− 1 and 2p− 1 respectively, so we also have
2n− 1 = 2p− 1. It follows that n = p. So (m,n) = (p, q). Thus f is one-to-one.

Let r ∈ N. Let 2k be the largest power of 2 that divides r. Then r = 2kl where l ∈ N, l is
odd. Then l = 2x + 1 for some x ∈ Z. Let m = k + 1 and n = x + 1. Then k = m − 1 and
l = 2x + 1 = 2(n − 1) + 1 = 2n − 1. Therefore r = 2m−1(2n − 1). Since k ∈ Z and k ≥ 0, we
have m ∈ N and since l > 1, x > 0, so n ∈ N. Thus the number r is in the image, so f is onto.
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