1. Prove that for every odd integer $n, 6 n^{2}+5 n+4$ is odd.

If n is odd, then $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $6 n^{2}+5 n+4=6(2 k+1)^{2}+5(2 k+1)+4=$ $6(2 k+1)^{2}+10 k+5+4=6(2 k+1)^{2}+10 k+9=2\left(3(2 k+1)^{2}+5 k+4\right)+1$. Since $3(2 k+1)^{2}+5 k+4 \in \mathbb{Z}, 6 n^{2}+5 n+4$ is odd.
2. Make truth tables for the following compound statements.

The truth tables are shown below.
(a) $Q \vee(R \wedge S)$

Q	R	S	$R \wedge S$	$Q \vee(R \wedge S)$
T	T	T	T	T
T	T	F	F	T
T	F	T	F	T
T	F	F	F	T
F	T	T	T	T
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

(b)

P	Q	$P \Longleftrightarrow Q$	$P \wedge(P \Longleftrightarrow Q)$	$\sim Q$	$(P \wedge(P \Longleftrightarrow Q)) \wedge \sim Q$
T	T	T	T	F	F
T	F	F	F	T	F
F	T	F	F	F	F
F	F	T	F	T	F

3. Provide counterexamples to the following proposed (but false) statements.
(a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},(x>1 \wedge y>0) \Longrightarrow y^{x}>x$.

Let $x=2$ and $y=1$. Then $y^{x}=1$, so $y^{x} \ngtr x$.
(b) For all positive integers $x, x^{2}-x+11$ is a prime number.

Let $x=11$, then $x^{2}-x+11=11^{2}-11+11=11^{2}=11 \cdot 11$ is not prime .
4. A sequence $\left\{x_{n}\right\}$ is defined recursively by $x_{1}=1, x_{2}=2$, and $x_{n}=x_{n-1}+2 x_{n-2}$ for $n \geq 3$. Conjecture a formula for x_{n} and verify that your conjecture is correct.
First we find the first few terms: $x_{1}=1, x_{2}=2, x_{3}=4, x_{4}=8, x_{5}=16$. It appears that $x_{n}=2^{n-1}$.
We will prove this conjecture by Strong Mathematical Induction.
Basis step: if $n=1$, then $x_{1}=2^{0}$ is true.
Inductive step: assume that $x_{i}=2^{i-1}$ for all i such that $1 \leq i \leq k$ for some $k \in \mathbb{N}$. We will prove that $x_{k+1}=2^{k}$.
If $k=1$, then $x_{k+1}=x_{2}=2=2^{1}$ is true.
If $k \geq 2$, then $x_{k+1}=x_{k}+2 x_{k-1}=2^{k-1}+2 \cdot 2^{k-2}=2^{k-1}+2^{k-1}=2^{k}$.
5. A relation R is defined on \mathbb{Z} by $x R y$ if $x \cdot y \geq 0$. Prove or disprove the following:
(a) R is reflexive,

For any $x \in \mathbb{Z}, x \cdot x \geq 0$, so $x R$. Thus R is reflexive.
(b) R is symmetric,

If x, then $x \cdot y \geq 0$. Then $y \cdot x \geq 0$, so y. Thus R is symmetric.
(c) R is transitive.

Since $-1 \cdot 0 \geq 0$ and $0 \cdot 1 \geq 0$, but $-1 \cdot 1 \nsupseteq 0$, we have that $-1 R 0,0 R 1$, but $-1 \not R 1$. Thus R is not transitive.
6. Let A, B, and C be sets.
(a) Prove that $A \subseteq B$ iff $A-B=\varnothing$.
(\Rightarrow) We will prove this direction by contrapositive. Let $A-B \neq \varnothing$. Then there exists $x \in A-B$. Since $x \in A$ and $x \notin B$, it follows that $A \nsubseteq B$.
(\Leftarrow) We will prove this by contrapositive again. Let $A \nsubseteq B$. Then there exists $x \in A$ such that $x \notin B$. Then $x \in A-B$, therefore $A-B \neq \emptyset$.
(b) Prove that if $A \subseteq B \cup C$ and $A \cap B=\varnothing$, then $A \subseteq C$.

Let $x \in A$. Since $A \subseteq B \cup C, x \in B \cup C$. Therefore $x \in B$ or $x \in C$. Since $A \cap B=\varnothing$ and $x \in A, x \notin B$. Thus $x \in C$.
7. Prove that $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}x+4 & \text { if } x \leq-2 \\ -x & \text { if }-2<x<2 \\ x-4 & \text { if } x \geq 2\end{cases}
$$

is onto \mathbb{R} but not one-to-one. (Hint: Try to graph this function; this will help you see how to prove what you need to prove.)

The function f is not one-to-one because $f(0)=0=4-4=f(4)$ but $0 \neq 4$.
It remains to show that f is onto. Let $y \in \mathbb{R}$. We will consider the following two cases.
Case I: $y \geq 0$. Let $x=y+4$, then $x \geq 2$, so $f(x)=x-4=y+4-4=y$.
Case II: $y<0$. Let $x=y-4$, then $x \leq-2$, so $f(x)=x+4=y-4+4=y$.

Extra Credit

Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a function given by $f((m, n))=2^{m-1}(2 n-1)$. Is f one-to-one? Is f onto?

We will prove that f is both one-to-one and onto.
Let $f((m, n))=f((p, q))$. Since $2 n-1$ and $2 q-1$ are odd, the highest powers of 2 that divide $f((m, n))$ and $f((p, q))$ are 2^{m-1} and 2^{p-1} respectively. Since $f((m, n))=f((p, q)), 2^{m-1}=2^{p-1}$. It follows that $m-1=p-1$, so $m=p$. Since 2^{m-1} and 2^{p-1} are powers of two, the largest odd numbers that divide $f((m, n))$ and $f((p, q))$ are $2 n-1$ and $2 p-1$ respectively, so we also have $2 n-1=2 p-1$. It follows that $n=p$. So $(m, n)=(p, q)$. Thus f is one-to-one.

Let $r \in \mathbb{N}$. Let 2^{k} be the largest power of 2 that divides r. Then $r=2^{k} l$ where $l \in \mathbb{N}, l$ is odd. Then $l=2 x+1$ for some $x \in \mathbb{Z}$. Let $m=k+1$ and $n=x+1$. Then $k=m-1$ and $l=2 x+1=2(n-1)+1=2 n-1$. Therefore $r=2^{m-1}(2 n-1)$. Since $k \in \mathbb{Z}$ and $k \geq 0$, we have $m \in \mathbb{N}$ and since $l>1, x>0$, so $n \in \mathbb{N}$. Thus the number r is in the image, so f is onto.

