Homework 10 - Solutions

7.6. R is not reflexive because $(a, a) \notin R$.

R is not symmetric because $(a, b) \in R$ but $(b, a) \notin R$.

R is transitive because whenever $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$ (this is true vacuously because there is only one pair in R).

7.8. R is reflexive because |a - a| = 0 ≤ 2, thus (a, a) ∈ R for any a ∈ Z.
R is symmetric because if (a, b) ∈ R, then |a - b| ≤ 2, then |b - a| = |a - b| ≤ 2, thus (b, a) ∈ R.
R is not transitive because e.g. |1 - 3| ≤ 2 and |3 - 5| ≤ 2, but |1 - 5| ≤ 2, thus

R is not transitive because e.g. $|1-3| \le 2$ and $|3-5| \le 2$, but $|1-5| \le 2$, thus $(1,3) \in R$ and $(3,5) \in R$, but $(1,5) \notin R$.

7.10. *R* is not reflexive because $A \neq \emptyset$, therefore there exists an element $x \in A$. However, $R = \emptyset$, so $(x, x) \notin R$.

R is symmetric and transitive (these properties hold vacuously since there are no pairs in R).

- 7.18. Since R is an equivalence relation, it is symmetric and transitive. Since a R b and R is symmetric, b R a. Since c R d and R is symmetric, d R c. Since b R a, a R d, and R is transitive, b R d. Since b R d, d R c, and R is transitive, b R c.
- 7.22. The statement is false. R is not an equivalence relation because it is not transitive: e.g. if a = 2, b = 6, c = 3, then a|b and c|b, but $a \not|c$ and $c \not|a$, so $(a, b) \in R$ and $(b, c) \in R$, but $(a, c) \notin R$.
- 7.26. The statement is false. For example, $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,3)\}$ and $R_1 = \{(1,1), (1,3), (2,2), (3,1), (3,3)\}$ are equivalence relations on $A = \{1,2,3\}$, but $R_3 = R_1 \cup R_2 = \{(1,1), (1,2), (1,3)(2,1), (2,2), (3,1), (3,3)\}$ is not an equivalence relation (it is not transitive: $(2,1), (1,3) \in R_3$, but $(2,3) \notin R_3$).