Homework 10 - Solutions

7.6. R is not reflexive because $(a, a) \notin R$.
R is not symmetric because $(a, b) \in R$ but $(b, a) \notin R$.
R is transitive because whenever $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$ (this is true vacuously because there is only one pair in R).
7.8. R is reflexive because $|a-a|=0 \leq 2$, thus $(a, a) \in R$ for any $a \in \mathbb{Z}$.
R is symmetric because if $(a, b) \in R$, then $|a-b| \leq 2$, then $|b-a|=|a-b| \leq 2$, thus $(b, a) \in R$.
R is not transitive because e.g. $|1-3| \leq 2$ and $|3-5| \leq 2$, but $|1-5| \not \leq 2$, thus $(1,3) \in R$ and $(3,5) \in R$, but $(1,5) \notin R$.
7.10. R is not reflexive because $A \neq \emptyset$, therefore there exists an element $x \in A$. However, $R=\emptyset$, so $(x, x) \notin R$.
R is symmetric and transitive (these properties hold vacuously since there are no pairs in R).
7.18. Since R is an equivalence relation, it is symmetric and transitive. Since $a R b$ and R is symmetric, $b R a$. Since $c R d$ and R is symmetric, $d R c$. Since $b R a, a R d$, and R is transitive, $b R d$. Since $b R d, d R c$, and R is transitive, $b R c$.
7.22. The statement is false. R is not an equivalence relation because it is not transitive: e.g. if $a=2, b=6, c=3$, then $a \mid b$ and $c \mid b$, but $a \nless c$ and $c \nmid a$, so $(a, b) \in R$ and $(b, c) \in R$, but $(a, c) \notin R$.
7.26. The statement is false. For example, $R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,3)\}$ and $R_{1}=\{(1,1),(1,3),(2,2),(3,1),(3,3)\}$ are equivalence relations on $A=\{1,2,3\}$, but $R_{3}=R_{1} \cup R_{2}=\{(1,1),(1,2),(1,3)(2,1),(2,2),(3,1),(3,3)\}$ is not an equivalence relation (it is not transitive: $(2,1),(1,3) \in R_{3}$, but $(2,3) \notin R_{3}$).

