Homework 11 - Solutions

7.12 (a) We will prove that R is reflexive. For any $a \in \mathbb{Z}, a \cdot a \geq 0$, so $(a, a) \in R$. Thus R is reflexive.
(b) We will prove that R is symmetric. If $(a, b) \in R$, then $a b \geq 0$. Since $b a=a b$, $b a \geq 0$. So $(b, a) \in R$. Thus R is symmetric.
(c) We will show that R is not transitive. Consider $a=1, b=0$, and $c=-1$. Then $a b=0 \geq 0, b c=0 \geq 0$, and $a c=-1 \nsupseteq 0$. So $(a, b) \in R,(b, c) \in R$, but $(a, c) \notin R$. Thus R is not transitive.
7.14. R is reflexive because for any $a \in \mathbb{Z}, a^{3}=a^{3}$, thus $(a, a) \in R$.
R is symmetric because if $(a, b) \in R$, then $a^{3}=b^{3}$, then $b^{3}=a^{3}$, thus $(b, a) \in R$.
R is transitive because if $(a, b) \in R$ and $(b, c) \in R$, then $a^{3}=b^{3}$ and $b^{3}=c^{3}$, then $a^{3}=c^{3}$, thus $(a, c) \in R$.
Since R is reflexive, symmetric, and transitive, it is an equivalence relation.
To determine its equivalence classes, notice that $(a, b) \in R$ iff $a^{3}=b^{3}$ iff $a=b$. Thus every integer is equivalent only to itself. This means that each element forms its own equivalence class, and thus there are infinitely many equivalence classes: $\ldots,[-1]=\{-1\},[0]=\{0\},[1]=\{1\},[2]=\{2\}, \ldots$
7.16. Let's we compute the equivalence class of every element:
$[1]=\{x \mid(x, 1) \in R\}=\{1,5\}$,
$[2]=\{x \mid(x, 2) \in R\}=\{2,3,6\}$,
$[3]=\{x \mid(x, 3) \in R\}=\{2,3,6\}$,
$[4]=\{x \mid(x, 4) \in R\}=\{4\}$,
$[5]=\{x \mid(x, 5) \in R\}=\{1,5\}$,
$[6]=\{x \mid(x, 6) \in R\}=\{2,3,6\}$.
Thus there are three distinct equivalence classes: $\{1,5\},\{2,3,6\}$, and $\{4\}$.
7.20. Consider $R=\{(v, v),(v, w),(w, v),(w, w),(x, x),(x, y),(y, x),(y, y),(z, z)\}$. This equivalence relation has three distinct equivalence classes, namely, $\{v, w\},\{x, y\}$, and $\{z\}$.
7.24. For any $x \in \mathbb{Z}, 3 x-7 x=-4 x=2(-2 x)$. Since $-2 x \in \mathbb{Z}, 3 x-7 x$ is even. So $(x, x) \in R$. Thus R is reflexive.

If $(x, y) \in R$, then $3 x-7 y$ is even, so $3 x-7 y=2 k$ for some $k \in \mathbb{Z}$. Then $3 y-7 x=3 x-7 y-10 x+10 y=2 k-10 x+10 y=2(k-5 x+5 y)$. Since $k-5 x+5 y \in \mathbb{Z}, 3 y-7 x$ is even. So $(y, x) \in R$. Thus R is symmetric.
If $(x, y) \in R$ and $(y, z) \in R$, then $3 x-7 y$ and $3 y-7 z$ are even. Then $3 x-7 y=2 k$ and $3 y-7 z=2 l$ for some $k, l \in \mathbb{Z}$. Then $3 x-7 z=3 x-7 y+3 y-7 z+4 y=$ $2 k+2 l+4 y=2(k+l+2 y)$. Since $k+l+2 y \in \mathbb{Z}, 3 x-7 z$ is even. So $(x, z) \in R$. Thus R is transitive.

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.
Next we determine the equivalence classes. Let's first compute [0]:
$[0]=\{x \mid(x, 0) \in R\}=\{x \mid 3 x$ is even $\}=\{x \mid x$ is even $\}=\{\ldots,-4,-2,0,2,4, \ldots\}$.
Since 1 is not in this equivalence class, next we will compute the equavalence class of 1 :
$[1]=\{x \mid(x, 1) \in R\}=\{x \mid 3 x-7$ is even $\}=\{x \mid 3 x$ is odd $\}=\{x \mid x$ is odd $\}=$ $\{\ldots,-3,-1,1,3, \ldots\}$.

Since $[0] \cup[1]=\mathbb{Z}$, these two classes are the only equivalence classes.
7.44. (a) (ii) Since $0 \cdot 0=0 \ngtr 0,(0,0) \notin R$, so R is not reflexive. If $(a, b) \in R$, then $a b>0$. Since $b a=a b, b a>0$. So $(b, a) \in R$. Thus R is symmetric.
If $(a, b),(b, c) \in R$, then $a b>0$ and $b c>0$. It follows that a and b have the same sign and b and c have the same sign, i.e. all three of a, b, and c are of the same sign. Therefore $a c>0$. Thus R is transitive.
(iv) An integer number is greater than or equal to 1 if and only if it is positive. Thus the conditions $x y \geq 1$ and $x y>0$ are equivalent. Therefore the relation R in this part is exactly the same as the relation in part (ii), and thus has the same propoerties: not reflexive, symmetric, and transitive.
(v) Since $0 \cdot 0=0$ is not odd, $(0,0) \notin R$, so R is not reflexive.

If $(a, b) \in R$, then $a b$ is odd. Since $b a=a b, b a$ is odd, so $(b, a) \in R$. Thus R is symmetric.
If $(a, b),(b, c) \in R$, then $a b$ and $b c$ are both odd. It follows that all three of a, b, and c are odd. Therefore $a c$ is odd. Thus R is transitive.

