Homework 12-Solutions

7.28. (1) Since for any $a \in \mathbb{Z}, 3 a+5 a \equiv 8 a \equiv 0(\bmod 8)$, it follows that $(a, a) \in R$. Thus R is reflexive.
(2) If $(a, b) \in R$, then $3 a+5 b \equiv 0(\bmod 8)$. Then $3 b+5 a \equiv(8 a+8 b)-(3 a+5 b) \equiv$ $0(\bmod 8)$, so $(b, a) \in R$. Thus R is symmetric.
(3) If $(a, b) \in R$ and $(b, c) \in R$, then $3 a+5 b \equiv 0(\bmod 8)$ and $3 b+5 c \equiv 0(\bmod 8)$. Then $3 a+5 c \equiv 3 a+8 b+5 c \equiv(3 a+5 b)+(3 b+5 c) \equiv 0(\bmod 8)$, so $(a, c) \in R$. Thus R is transitive.
7.34. (a) The statement is true. For example, if $a=0$, then for any integer $b, a b=0$. Since $3 \mid 0, a b \equiv 0(\bmod 3)$.
(b) The statement is false. For example, if $a=1$ and $b=1$, then $a b=1$, so $a b \not \equiv 0(\bmod 3)$.
7.36. (1) Since for any $a \in \mathbb{Z}, 5 \mid\left(a^{2}-a^{2}\right)$, it follows that $a^{2} \equiv a^{2}(\bmod 5)$, so $(a, a) \in R$. Thus R is reflexive.
(2) If $(a, b) \in R$, then $a^{2} \equiv b^{2}(\bmod 5)$. Then $b^{2} \equiv a^{2}(\bmod 5)$, so $(b, a) \in R$. Thus R is symmetric.
(3) If $(a, b) \in R$ and $(b, c) \in R$, then $a^{2} \equiv b^{2}(\bmod 5)$ and $b^{2} \equiv c^{2}(\bmod 5)$. Then $a^{2} \equiv c^{2}(\bmod 5)$, so $(a, c) \in R$. Thus R is transitive.
Since $0^{2} \equiv 0(\bmod 5), 1^{2} \equiv 1(\bmod 5), 2^{2} \equiv 4(\bmod 5), 3^{2} \equiv 4(\bmod 5)$, and $4^{2} \equiv 1(\bmod 5)$, the equivalence classes are:
$[0]=\left\{a \in Z \mid a^{2} \equiv 0(\bmod 5)\right\}=\{a \in Z \mid a \equiv 0(\bmod 5)\}=\{\ldots,-10,-5,0,5,10, \ldots\}$,
$[1]=\left\{a \in Z \mid a^{2} \equiv 1(\bmod 5)\right\}=\{a \in Z \mid a \equiv 1(\bmod 5)$ or $a \equiv 4(\bmod 5)\}=$ $\{\ldots,-9,-6,-4,-1,1,4,6,9, \ldots\}$, and
$[2]=\left\{a \in Z \mid a^{2} \equiv 4(\bmod 5)\right\}=\{a \in Z \mid a \equiv 2(\bmod 5)$ or $a \equiv 3(\bmod 5)\}=$ $\{\ldots,-8,-7,-3,-2,2,3,7,8, \ldots\}$.
(Note: since the union of these three classes is \mathbb{Z}, there are no other classes.)
8.2. Let $R=\{(1, a),(1, b),(1, c)\}$. Then R is not a function because the image of 1 is not well-defined (and the images of 2 and 3 are not defined).
8.4. The set of all functions from A to B is $B^{A}=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}\right\}$, where $f_{1}=\{(1, x),(2, x),(3, x)\}, f_{2}=\{(1, x),(2, x),(3, y)\}, f_{3}=\{(1, x),(2, y),(3, x)\}$, $f_{4}=\{(1, x),(2, y),(3, y)\}, f_{5}=\{(1, y),(2, x),(3, x)\}, f_{6}=\{(1, y),(2, x),(3, y)\}$, $f_{7}=\{(1, y),(2, y),(3, x)\}, f_{8}=\{(1, y),(2, y),(3, y)\}$.
8.6. Let $f=\{(w, r),(x, r),(y, s),(z, s)\}$. Then f is not one-to-one because $w \neq x$ but $f(w)=f(x)$. Also, f is not onto because t is not in the image.
8.8. (a) If $f\left(n_{1}\right)=f\left(n_{2}\right)$, i.e. $2 n_{1}+1=2 n_{2}+1$, thne $2 n_{1}=2 n_{2}$, so $n_{1}=n_{2}$. Thus f is injective.
(b) The function f is not surjective, because e.g. if $b=2$, then the equation $2 n+1=2$ has no integer solutions (the only real solution is $n=0.5$, but it is not an integer).
8.12. (a) The function f is not one-to-one because e.g. $-4 \neq 0$, but $f(-4)=9=f(0)$.
(b) The function f is not onto because for all $x \in \mathbb{R}, x^{2}+4 x+9=\left(x^{2}+4 x+4\right)+5=$ $(x+2)^{2}+5 \geq 5$, so e.g. $b=4$ is not in the image.
8.14. (a) Let $f(n)=n$. Then f is one-to-one (because $f\left(n_{1}\right)=f\left(n_{2}\right)$ implies $n_{1}=n_{2}$) and onto (because for any $b \in \mathbb{N}$, let $a=b$, then $f(a)=a=b$).
(b) Let $f(n)=n+1$. Then f is one-to-one (because $f\left(n_{1}\right)=f\left(n_{2}\right)$ implies $n_{1}=n_{2}$) but not onto (because for any $n \in \mathbb{N}, f(n)=n+1 \geq 2$, so $b=1$ is not in the image).
(c) Let $f(n)=|n-2|+1$. Then f is not one-to-one (because $1 \neq 3$ but $f(1)=2=f(3))$ and onto (because for any $b \in \mathbb{N}$, let $a=b+1$, then $f(a)=|a-2|+1=|b-1|+1=b-1+1=b$ since $b-1 \geq 0)$.
(d) Let $f(n)=1$. Then f is not one-to-one (because e.g. $1 \neq 2$ but $f(1)=f(2)$) and not onto (because e.g. $b=2$ is not in the image).

