Homework 13 - Solutions

8.19. First we will prove that f is injective. Let $f(a)=f(b)$. Then $\frac{5 a+1}{a-2}=\frac{5 b+1}{b-2}$. Therefore $(5 a+1)(b-2)=(a-2)(5 b+1)$, so $5 a b-10 a+b-2=10 a b+a-10 b-2$. It follows that $-10 a+b=a-10 b$, so $-11 a=-11 b$, thus $a=b$.
Next we will prove that f is surjective. For any $b \in \mathbb{R}-\{5\}$, let $a=\frac{2 b+1}{b-5}$. Then $a \in \mathbb{R}-\{2\}$ (since $\frac{2 b+1}{b-5}=2$ is equivalent to $2 b+1=2 b-10$ which has no real solutions) and $f(a)=f\left(\frac{2 b+1}{b-5}\right)=\frac{5 \cdot \frac{2 b+1}{b-5}+1}{\frac{2 b+1}{b-5}-2}=\frac{\frac{10 b+5}{b-5}+1}{\frac{2 b+1}{b-5}-2}=$ $\frac{(10 b+5)+(b-5)}{(2 b+1-2(b-5)}=\frac{11 b}{11}=b$, so b is in the image.
Since f is both injective and surjective, it is bijective.
8.22. The composition $g \circ f: A \rightarrow C$ is given by $g \circ f=\{(1, y),(2, x),(3, x),(4, x)\}$.
9.4. We will prove by Mathematical Induction.

Basis step: if $n=1$, then $1=2-1$ is true.
Inductive step: assume that $1+5+9+\ldots+(4 k-3)=2 k^{2}-k$ for some $k \in \mathbb{N}$.
We will prove that $1+5+9+\ldots+(4(k+1)-3)=2(k+1)^{2}-(k+1)$.
Observe that $1+5+9+\ldots+(4(k+1)-3)=(1+5+9+\ldots+(4 k-3))+(4(k+1)-3)=$ $\left(2 k^{2}-k\right)+(4(k+1)-3)=2 k^{2}-k+4 k+1=2 k^{2}+3 k+1=\left(2 k^{2}+4 k+2\right)-(k+1)=$ $2\left(k^{2}+2 k+1\right)-(k+1)=2(k+1)^{2}-(k+1)$.
9.8(a). Using identity (9.8), we have $2^{2}+4^{2}+6^{2}+\ldots+(2 n)^{2}=(2 \cdot 1)^{2}+(2 \cdot 2)^{2}+(2 \cdot 3)^{2}+$ $\ldots+(2 \cdot n)^{2}=2^{2}\left(1^{2}+2^{2}+3^{2}+\ldots+n^{2}\right)=4 \cdot \frac{n(n+1)(2 n+1)}{6}=\frac{2 n(n+1)(2 n+1)}{3}$.
9.9. We will prove by Mathematical Induction.

Basis step: if $n=1$, then $1 \cdot 2=\frac{1 \cdot 2 \cdot 3}{3}$ is true.
Inductive step: assume that $1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+k(k+1)=\frac{k(k+1)(k+2)}{3}$ for some $k \in \mathbb{N}$. We will prove that $1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+(k+1)(k+2)=$ $\frac{(k+1)(k+2)(k+3)}{3}$.
Observe that
$1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+(k+1)(k+2)=(1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+k(k+1))+(k+1)(k+2)=$
$\frac{k(k+1)(k+2)}{3}+(k+1)(k+2)=\frac{k(k+1)(k+2)+3(k+1)(k+2)}{3}=$
$\frac{(k+1)(k+2)(k+3)}{3}$.
9.12. We will prove by Mathematical Induction.

Basis step: if $n=1$, then $\frac{1}{3 \cdot 4}=\frac{1}{3+9}$ is true.
Inductive step: assume that $\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\ldots+\frac{1}{(k+2)(k+3)}=\frac{k}{3 k+9}$ for some
$k \in \mathbb{N}$. We will prove that $\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\ldots+\frac{1}{(k+3)(k+4)}=\frac{k+1}{3 k+12}$.
Observe that $\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\ldots+\frac{1}{(k+3)(k+4)}=\left(\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\ldots \frac{1}{(k+2)(k+3)}\right)+$ $\frac{1}{(k+3)(k+4)}=\frac{k}{3 k+9}+\frac{1}{(k+3)(k+4)}=\frac{k}{3(k+3)}+\frac{1}{(k+3)(k+4)}=\frac{k(k+4)+3}{3(k+3)(k+4)}=$ $\frac{k^{2}+4 k+3}{3(k+3)(k+4)}=\frac{(k+1)(k+3)}{3(k+3)(k+4)}=\frac{k+1}{3(k+4)}=\frac{k+1}{3 k+12}$.

