Homework 14 - Solutions

9.14. Proof by Mathamatical Induction.

Basis step: if $n=4$, then $4!>2^{4}$ is true.
Inductive step: assume that $k!>2^{k}$ holds for some $k \in \mathbb{Z}, k \geq 4$. We will prove that $(k+1)$! $>2^{k+1}$.
Since $k+1>2,(k+1)!=k!(k+1)>2^{k}(k+1)>2^{k} \cdot 2=2^{k+1}$.
9.19. Proof by Mathamatical Induction.

Basis step: if $n=0$, then $4 \mid\left(5^{0}-1\right)$ is true.
Inductive step: assume that $4 \mid\left(5^{k}-1\right)$ for some $k \in \mathbb{Z}, k \geq 0$. We will prove that $4 \mid\left(5^{k+1}-1\right)$.
Since $4 \mid\left(5^{k}-1\right), 5^{k}-1=4 x$ for some $x \in \mathbb{Z}$. Then $5^{k+1}-1=5^{k} \cdot 5-1=$ $5^{k} \cdot 4+5^{k}-1=5^{k} \cdot 4+4 x=4\left(5^{k}+x\right)$. Since $5^{k}+x \in \mathbb{Z}, 4 \mid\left(5^{k+1}-1\right)$.
9.32. The first few terms of the sequence are: $x_{1}=1, x_{2}=2, x_{3}=4, x_{4}=8, x_{5}=16$.

Conjecture: $x_{n}=2^{n-1}$.
Proof by Mathematical Induction.
Basis step: if $n=1$, then $x_{1}=2^{0}$ is true.
Inductive step: assume that $x_{k}=2^{k-1}$ holds for some $k \in \mathbb{N}$. We will prove that $x_{k+1}=2^{k}$.
Observe that $x_{k+1}=2 x_{k}=2 \cdot 2^{k-1}=2^{k}$.
9.40. The start is good, but after the phrase "observe that", the authors start with the identity that has to be proved, and derive a true statement $\left((k+1)^{2}=(k+1)^{2}\right)$. The order is wrong here. We should either start with a true statement and derive the one we have to prove, or say "follows from" /"since" / "because" / between the last four lines.

