Homework 2 - Solutions

1.20. (recommended) $\cup_{X \in S} X=\{0,1,2,3,4,5\}, \cap_{X \in S} X=\{2\}$
1.24. (a) $A_{n}=\left[0, \frac{1}{n}\right], n \in \mathbb{N}$
1.26. $S=\{X, Y, Z\}$ where $X=\{1,2\}, Y=\{3,4,5\}, Z=\{6\}$
1.28. (a) $(A \cup B)-(B \cap C)=\{1,2\}$
(b) $\bar{A}=\{3\} \quad$ (c) $\overline{B \cup C}=\emptyset$, (d) $A \times B=\{(1,2),(1,3),(2,2),(2,3)\}$
add. quest. (a) True statement
(b) False statement
(c) Not a statement
(d) Not a statement
(e) A statement, but I don't know its truth value
(f) True statement (or may be it is false for you)
(g) Not a statement
2.8.

P	Q	$\neg Q$	$P \wedge(\neg Q)$
T	T	F	F
T	F	T	T
F	T	F	F
F	F	T	F

2.10 .

P	Q	$P \Rightarrow Q$	$\neg P$	$(P \Rightarrow Q) \Rightarrow \neg P$
T	T	T	F	F
T	F	F	F	T
F	T	T	T	T
F	F	T	T	T

2.12. Since $(Q \vee R) \Rightarrow \neg P$ is false, $Q \vee R$ is true and $\neg P$ is false. It follows that P is true. Also, $Q \vee R$ is true and Q is false imply that R is true.

Note: problems 1.24 and 1.26 admit other correct answers. An alternative way to solve problem 2.12 is to construct a truth table and observe that only one case satisfies the given conditions.

