Homework 3 (due Wed/Thur, Sep 19/20)

Try to do this homework by Sep 19/20, but you may turn it in the following week (by Sep 26/27).

Do exercises 2.14, 2.16, and 2.22 in the book, and the following problems:

1. Let $P(x)$ denote " $x=-2$ " and let $Q(x)$ denote " $x^{2}=4$ " (as in exercise 2.16 in the book). Determine (and explain!) the truth values of the following statements:
(a) $\exists x \neg P(x)$
(b) $\forall x(P(x) \vee Q(x))$
(c) $\exists x(P(x) \wedge Q(x))$
(d) $\forall x(P(x) \Rightarrow Q(x))$
(e) $\exists x(Q(x) \Rightarrow P(x))$
(f) $\forall x(P(x) \Leftrightarrow Q(x))$
2. Let $F(x, y)$ be statement " x can fool y ", where the domain for both variables is the set of all people in the world. Use quantifiers to express each of the following statements:
(a) Mike can fool everybody.
(b) Everybody can fool somebody.
(c) No one can fool both Fred and Jerry.
3. Let $Q(x, y)$ denote " $x+y=0$ ". What are the truth values of the statements $\exists y \forall x Q(x, y)$ and $\forall x \exists y Q(x, y)$? Explain your answers!
4. Rewrite each of the following statements so that negations appear only within predicates:
(a) $\neg \forall y \exists x P(x, y)$
(b) $\neg(\exists x \exists y \neg P(x, y) \wedge \forall x \forall y Q(x, y))$
5. Are propositions
(a) $\forall x(P(x) \Leftrightarrow Q(x))$ and $(\forall x P(x)) \Leftrightarrow(\forall x Q(x))$
(b) $\exists x(P(x) \Leftrightarrow Q(x))$ and $(\exists x P(x)) \Leftrightarrow(\exists x Q(x))$
logically equivalent, i.e. do they always have the same truth value (regardless of what P and Q are)? If so, explain why. If not, give an example of propositional functions $P(x)$ and $Q(x)$ for which one of the propositions is true and the other one is false.
