Homework 4 - Solutions

1. For any $x \in \mathbb{R}, x^{2}+2 x+4=x^{2}+2 x+1+3=(x+1)^{2}+3 \geq 0+3=3$. Since the conclusion is true for all x, the implication is true. (This is a trivial proof.)
2. For any $n \in \mathbb{Z}, n^{2}-2 n+5=n^{2}-2 n+1+4=(n-1)^{2}+4 \geq 4>3$, therefore $n^{2}-2 n+5 \not \leq 3$. Since the hypothesis is false for all n, the implication is true. (This is a vacuous proof.)
3. We have $2 n^{2}-8 n+10=2\left(n^{2}-4 n+5\right)$. Since n is an integer, $n^{2}-4 n+5$ is an integer, and thus $2 n^{2}-8 n+10$ is even.
3.2. If x is an even integer, then $x=2 y$ for some integer y. Then $5 x-3=5 \cdot 2 y-3=$ $10 y-3=10 y-4+1=2(5 y-2)+1$. Since $5 y-2$ is an integer, $5 x-3$ is an odd integer.
3.4. Proof by contrapositive. Suppose x is not even, i.e. is odd. Then $x=2 y+1$ for some integer y, and $7 x+5=7(2 y+1)+5=14 y+12=2(7 y+6)$. Since $7 y+6$ is an integer, $7 x+5$ is an even integer, therefore is not odd. This proves that if $7 x+5$ is odd, then x is even.
3.6. First we will prove that if $5 x-11$ is even, then x is odd. We will prove this by contrapositive. Assume x is not odd, i.e. is even. Then $x=2 y$ for some integer y, and $5 x-11=5(2 y)-11=10 y-11=10 y-12+1=2(5 y-6)+1$. Since $5 y-6$ is an integer, $5 x-11$ is odd, therefore is not even.

Next we prove that if x is odd, then $5 x-11$ is even. This part we will prove directly. If x is odd, then $x=2 y+1$ for some integer y, and $5 x-11=5(2 y+1)-11=$ $10 y-6=2(5 y-3)$. Since $5 y-3$ is an integer, $5 x-11$ is even.
3.8. Lemma. Let $x \in \mathbb{Z}$. If $7 x+4$ is even, then x is even.

Proof of lemma (by contrapositive). Suppose x is not even, i.e. is odd. Then $x=2 y+1$ for some integer y, and $7 x+4=7(2 y+1)+4=14 y+11=$ $14 y+10+1=2(7 y+5)+1$. Since $7 y+5$ is an integer, $7 x+4$ is odd, i.e. is not even.

Proof of the result. If $7 x+4$ is even, then by the above lemma x is even. Therefore $x=2 y$ for some integer y, and $3 x-11=3(2 y)-11=6 y-11=6 y-12+1=$ $2(3 y-6)+1$. Since $3 y-6$ is an integer, $3 x-11$ is odd.

