Homework 6 - Solutions

4.6. We will prove this by contrapositive. If $3 \not \backslash a$, then either $a=3 k+1$ or $a=3 k+2$ for some $k \in \mathbb{Z}$.
Case I: $a=3 k+1$ for some $k \in \mathbb{Z}$. Then $2 a=2(3 k++1)=3(2 a)+2$, therefore $3 \nless 2 a$.
Case II: $a=3 k+2$ for some $k \in \mathbb{Z}$. Then $2 a=2(3 k+2)=3(2 k+1)+1$, therefore $3 \times 2 a$.
4.8. If $a \equiv b(\bmod n)$, then $n \mid(a-b)$. Therefore $n \mid((a-b)(a+b))$, i.e. $n \mid\left(a^{2}-b^{2}\right)$. Thus $a^{2} \equiv b^{2}(\bmod n)$.
4.10. We will prove the statement by contrapositive. Assume that it is not the case that either a and b are both congruent to 0 modulo 3 or neither is congruent to 0 modulo 3 . Then exactly one of a, b is congruent to 0 modulo 3 . We have four cases.
Case I: $a \equiv 0(\bmod 3)$ and $b \equiv 1(\bmod 3)$. Then $a^{2}+2 b^{2} \equiv 0^{2}+2 \cdot 1^{2} \equiv 2(\bmod 3)$, thus $a^{2}+2 b^{2} \not \equiv 0(\bmod 3)$.
Case II: $a \equiv 0(\bmod 3)$ and $b \equiv 2(\bmod 3)$. Then $a^{2}+2 b^{2} \equiv 0^{2}+2 \cdot 2^{2} \equiv 8 \equiv 2(\bmod 3)$, thus $a^{2}+2 b^{2} \not \equiv 0(\bmod 3)$.
Case III: $a \equiv 1(\bmod 3)$ and $b \equiv 0(\bmod 3)$. Then $a^{2}+2 b^{2} \equiv 1^{2}+2 \cdot 0^{2} \equiv 1(\bmod 3)$, thus $a^{2}+2 b^{2} \not \equiv 0(\bmod 3)$.
Case IV: $a \equiv 2(\bmod 3)$ and $b \equiv 0(\bmod 3)$. Then $a^{2}+2 b^{2} \equiv 2^{2}+2 \cdot 0^{2} \equiv 4 \equiv 1(\bmod 3)$, thus $a^{2}+2 b^{2} \not \equiv 0(\bmod 3)$.
4.12. (a) The converse: Let $n \in \mathbb{Z}$. If $n \not \equiv 0(\bmod 3)$ and $n \not \equiv 1(\bmod 3)$, then $n^{2} \not \equiv$ $n(\bmod 3)$.
Proof. The conjunction $n \not \equiv 0(\bmod 3)$ and $n \not \equiv 1(\bmod 3)$ implies $n \equiv 2(\bmod 3)$. Then $n^{2} \equiv 4(\bmod 3)$. Since $4 \not \equiv 2(\bmod 3)$, it follows that $n^{2} \not \equiv n(\bmod 3)$.
(b) Let $n \in \mathbb{Z}$. Then $n^{2} \not \equiv n(\bmod 3)$ if and only if $n \not \equiv 0(\bmod 3)$ and $n \not \equiv 1(\bmod 3)$.
4.42. The proof contains a mistake. In the third sentence they assume that $x-1=3 q$ and $y-1=3 q$ for some integer q, which implies that $x=y$. However, x and y may not be equal, so different variables must be used, e.g. $x-1=3 q$ and $y-1=3 r$ for some integers q and r.

