Homework 7 - Solutions

4.14. Proof by contrapositive. If $a<3 m+1$ and $b<2 m+1$, then since $a, 3 m+1$, b, and $2 m+1$ are integers, it follows that $a \leq 3 m$ and $b \leq 2 m$. Then $2 a+3 b \leq$ $2 \cdot 3 m+3 \cdot 2 m=12 m<12 m+1$, so the inequality $2 a+3 b \geq 12 m+1$ does not hold. Therefore $2 a+3 b \geq 12 m+1$ implies $a \geq 3 m+1$ or $b \geq 2 m+1$.
4.18. Each of x and y is either nonnegative or negative. Thus we will consider the following cases.

Case I: $x \geq 0, y \geq 0$. Then $x y \geq 0$. Therefore $|x y|=x y=|x| \cdot|y|$.
Case II: $x<0, y<0$. Then $x y>0$. Therefore $|x y|=x y=(-x)(-y)=|x| \cdot|y|$.
Case III: one of x and y is nonnegative and the other one is positive. Without loss of generality we can assume that $x \geq 0$ and $y<0$. Then $x y \leq 0$. Therefore $|x y|=-(x y)=x(-y)=|x| \cdot|y|$.
4.20. First we will show that $A \cup B \subset(A-B) \cup(B-A) \cup(A \cap B)$.

Let $x \in A \cup B$. Then $x \in A$ or $x \in B$ (or both). We will consider three cases:
Case I: $x \in A$ and $x \notin B$. Then $x \in A-B$, therefore $x \in(A-B) \cup(B-A) \cup(A \cap B)$.
Case II: $x \in B$ and $x \notin A$. Then $x \in B-A$, therefore $x \in(A-B) \cup(B-A) \cup(A \cap B)$.
Case III: $x \in A$ and $x \in B$. Then $x \in A \cap B$, therefore $x \in(A-B) \cup(B-A) \cup$ $(A \cap B)$.
Next we will show that $(A-B) \cup(B-A) \cup(A \cap B) \subset A \cup B$.
Let $x \in(A-B) \cup(B-A) \cup(A \cap B)$. Then $x \in(A-B)$ or $x \in(B-A)$ or $x \in(A \cap B)$. So we will consider these three cases.
Case I: $x \in(A-B)$. Then $x \in A$, therefore $x \in A \cup B$.
Case II: $x \in(B-A)$. Then $x \in B$, therefore $x \in A \cup B$.
Case III: $x \in(A \cap B)$. Then $x \in A$, therefore $x \in A \cup B$.
4.22. First we will prove that if $A \cap B=A$, then $A \subset B$.

Let $x \in A$. Since $A \cap B=A, x \in A \cap B$. Therefore $x \in B$, so $A \subset B$.
Next we will prove that if $A \subset B$, then $A \cap B=A$.
To show $A \cap B=A$, we have to show that $A \cap B \subset A$ and $A \subset A \cap B$. The first inclusion holds because if $x \in A \cap B$, then $x \in A$. To show the second inclusion, let $x \in A$. Since $A \subset B$, by definition $x \in B$. Then $x \in A \cap B$.
4.23. (b) Let $A=\{1,2\}, B=\emptyset, C=\{1\}$. Then $A \cup B=\{1,2\}$ and $A \cup C=\{1,2\}$, but $B \neq C$.
(c) Assume that $A \cap B=A \cap C$ and $A \cup B=A \cup C$. First we will show that $B \subset C$. Let $x \in B$. Since either $x \in A$ or $x \notin A$, we will consider two cases. Case I: $x \in A$. Then $x \in A \cap B$, therefore $x \in A \cap C$. It follows that $x \in C$. Case II: $x \notin A$. Since $x \in B, x \in A \cup B$. Therefore $x \in A \cup C$. Then $x \in A$ or $x \in C$. Since $x \notin A$, it follows that $x \in C$.
The proof of $C \subset B$ is similar.
4.24. Let $A \cup B \neq \emptyset$. Then there exists an element $x \in A \cup B$. By definition, $x \in A$ or $x \in B$. If $x \in A$, then $A \neq \emptyset$. If $x \in B$, then $B \neq \emptyset$.
4.27. First we will show that $A \cap(B \cup C) \subset(A \cap B) \cup(A \cap C)$.

Let $x \in A \cap(B \cup C)$. Then $x \in A$ and $x \in(B \cup C)$. Than $x \in B$ or $x \in C$. If $x \in B$, then $x \in(A \cap B)$, and therefore $x \in(A \cap B) \cup(A \cap C)$. If $x \in C$, then $x \in(A \cap C)$, and therefore $x \in(A \cap B) \cup(A \cap C)$.
Next we will show that $(A \cap B) \cup(A \cap C) \subset A \cap(B \cup C)$.
Let $x \in(A \cap B) \cup(A \cap C)$. Then $x \in(A \cap B)$ or $x \in(A \cap C)$. If $x \in(A \cap B)$, then $x \in A$ and $x \in B$, therefore $x \in(B \cup C)$, and thus $x \in A \cap(B \cup C)$. If $x \in(A \cap C)$, then $x \in A$ and $x \in C$ therefore $x \in(B \cup C)$, and thus $x \in A \cap(B \cup C)$.
4.28. First we will show that $\overline{A \cap B} \subset \bar{A} \cup \bar{B}$.

Let $x \in \overline{A \cap B}$. Then $x \notin A \cap B$. Therefore $x \notin A$ or $x \notin B$, i.e. $x \in \bar{A}$ or $x \in \bar{B}$. It follows that $x \in \bar{A} \cup \bar{B}$.
Next we will show that $\bar{A} \cup \bar{B} \subset \overline{A \cap B}$.
Let $x \in \bar{A} \cup \bar{B}$. Then $x \in \bar{A}$ or $x \in \bar{B}$, so $x \notin A$ or $x \notin B$. Since x is not in both A and $B, x \notin A \cap B$. Therefore $x \in \overline{A \cap B}$.
4.37. First we will show that $(A \times B) \cap(C \times D) \subset(A \cap C) \times(B \cap D)$.

Let $x \in(A \times B) \cap(C \times D)$. Then $x \in(A \times B)$ and $x \in(C \times D)$. Therefore $x=(y, z)$ where $y \in A, z \in B, y \in C$, and $z \in D$. This implies that $y \in(A \cap C)$ and $z \in(B \cap D)$, thus $x=(y, z) \in(A \cap C) \times(B \cap D)$.
Next we will show that $(A \cap C) \times(B \cap D) \subset(A \times B) \cap(C \times D)$.
Let $x \in(A \cap C) \times(B \cap D)$. Then $x=(y, z)$ where $y \in(A \cap C)$ and $z \in(B \cap D)$. Therefore $y \in A, y \in C, z \in B$, and $z \in D$. This implies that $(y, z) \in(A \times B)$ and $(y, z) \in(C \times D)$, thus $x=(y, z) \in(A \times B) \cap(C \times D)$.

