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Homework 7 - Solutions

Proof by contrapositive. If a < 3m + 1 and b < 2m + 1, then since a, 3m + 1,
b, and 2m + 1 are integers, it follows that a < 3m and b < 2m. Then 2a + 3b <
2:3m+3-2m = 12m < 12m + 1, so the inequality 2a + 30 > 12m + 1 does not
hold. Therefore 2a + 3b > 12m + 1 implies a > 3m + 1 or b > 2m + 1.

Each of x and y is either nonnegative or negative. Thus we will consider the
following cases.

Case I: x > 0, y > 0. Then zy > 0. Therefore |xy| = xy = |z| - |y|.

Case II: < 0, y < 0. Then zy > 0. Therefore |zy| = zy = (—x)(—y) = || - |y|.
Case III: one of x and y is nonnegative and the other one is positive. Without
loss of generality we can assume that x > 0 and y < 0. Then zy < 0. Therefore
lzy| = —(zy) = z(=y) = |z - |y|.

First we will show that AUB C (A— B)U(B—A)U(ANB).

Let x € AUB. Then x € A or x € B (or both). We will consider three cases:

Casel:x € Aand x ¢ B. Then x € A—B, therefore z € (A—B)U(B—A)U(ANB).
CaseIl:z € Bandx ¢ A. Then z € B—A, therefore z € (A—B)U(B—A)U(ANB).
U

Case III: x € A and z € B. Then x € AN B, therefore x € (A — B) U (B — A)
(AN B).

Next we will show that (A — B)U(B—-A)U(ANB)C AUB.

Let z € (A—B)U(B—-—A)U(ANDB). Thenzx € (A—B)orxz € (B—A) or
z € (AN B). So we will consider these three cases.

Case I: x € (A — B). Then z € A, therefore x € AU B.

Case II: x € (B — A). Then = € B, therefore x € AU B.

Case III: z € (AN B). Then z € A, therefore x € AU B.

First we will prove that if AN B = A, then A C B.

Let z € A. Since ANB = A, x € AN B. Therefore x € B, so A C B.

Next we will prove that if A C B, then AN B = A.

To show AN B = A, we have to show that AN B C Aand A C AN B. The first
inclusion holds because if x € AN B, then x € A. To show the second inclusion,
let x € A. Since A C B, by definition x € B. Then z € AN B.

(b) Let A={1,2}, B=0,C = {1}. Then AUB = {1,2} and AUC = {1, 2},
but B # C.
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(c) Assume that ANB =ANC and AUB = AUC. First we will show that
B C C. Let x € B. Since either z € A or x ¢ A, we will consider two cases.

Case I x € A. Then x € AN B, therefore x € ANC. It follows that z € C.

Case II: © ¢ A. Since x € B, x € AU B. Therefore x € AUC. Then z € A
or x € C. Since x &€ A, it follows that x € C.

The proof of C' C B is similar.

Let AU B # (0. Then there exists an element x € AU B. By definition, z € A or
re€B. Ifxe A, then A#(. If z € B, then B # ().

First we will show that AN (BUC) C (ANB)U(ANCOC).

Let t €¢ AN(BUC). Thenz € Aand 2 € (BUC). Thanz € Bor x € C. If
r € B, then x € (AN B), and therefore v € (AN B)U (ANC). If x € C, then
z € (ANC), and therefore x € (AN B)U (AN C).

Next we will show that (AN B)U(ANC)C An(BUC).

Let . € (ANB)U(ANC). Thenz € (ANB)orz € (ANC). If x € (AN B), then
x € Aand z € B, therefore z € (BUC), and thus z € AN(BUC). If z € (ANC),
then x € A and = € C therefore x € (BUC), and thus v € AN (BUC).

First we will show that AN B C AU B. B B
Let x € AN B. Then x ¢ AN B. Therefore x ¢ Aorx ¢ B,i.e. x € Aorz € B.
It follows that x € AU B.

Next we will show thatZLiEC Aﬂ_B.
Let r € AUB. Thenz € Aorx € B,sox ¢ Aorx ¢ B. Since z is not in both
Aand B, z ¢ AN B. Therefore x € AN B.

First we will show that (A x B)N(C x D) C (ANC) x (BN D).

Let x € (Ax B)N(C x D). Then z € (A x B) and x € (C x D). Therefore
xr=(y,z) wherey € A, z € B,y € C, and z € D. This implies that y € (AN C)
and z € (BN D), thus z = (y,2) € (ANC) x (BN D).

Next we will show that (ANC) x (BND)C (Ax B)N(C x D).

Let x € (ANC) x (BN D). Then z = (y,2) where y € (ANC) and z € (BN D).
Therefore y € A, y € C, z € B, and z € D. This implies that (y,z) € (A x B)
and (y,z) € (C x D), thus x = (y,2) € (A x B)N (C x D).



