Homework 7 - Solutions

- 4.14. Proof by contrapositive. If a < 3m + 1 and b < 2m + 1, then since a, 3m + 1, b, and 2m + 1 are integers, it follows that $a \le 3m$ and $b \le 2m$. Then $2a + 3b \le 2 \cdot 3m + 3 \cdot 2m = 12m < 12m + 1$, so the inequality $2a + 3b \ge 12m + 1$ does not hold. Therefore $2a + 3b \ge 12m + 1$ implies $a \ge 3m + 1$ or $b \ge 2m + 1$.
- 4.18. Each of x and y is either nonnegative or negative. Thus we will consider the following cases.

Case I: $x \ge 0, y \ge 0$. Then $xy \ge 0$. Therefore $|xy| = xy = |x| \cdot |y|$. Case II: x < 0, y < 0. Then xy > 0. Therefore $|xy| = xy = (-x)(-y) = |x| \cdot |y|$. Case III: one of x and y is nonnegative and the other one is positive. Without loss of generality we can assume that $x \ge 0$ and y < 0. Then $xy \le 0$. Therefore $|xy| = -(xy) = x(-y) = |x| \cdot |y|$.

- 4.20. First we will show that $A \cup B \subset (A B) \cup (B A) \cup (A \cap B)$. Let $x \in A \cup B$. Then $x \in A$ or $x \in B$ (or both). We will consider three cases: Case I: $x \in A$ and $x \notin B$. Then $x \in A - B$, therefore $x \in (A - B) \cup (B - A) \cup (A \cap B)$. Case II: $x \in B$ and $x \notin A$. Then $x \in B - A$, therefore $x \in (A - B) \cup (B - A) \cup (A \cap B)$. Case III: $x \in A$ and $x \in B$. Then $x \in A \cap B$, therefore $x \in (A - B) \cup (B - A) \cup (A \cap B)$. Case III: $x \in A$ and $x \in B$. Then $x \in A \cap B$, therefore $x \in (A - B) \cup (B - A) \cup (A \cap B)$. Next we will show that $(A - B) \cup (B - A) \cup (A \cap B) \subset A \cup B$. Let $x \in (A - B) \cup (B - A) \cup (A \cap B)$. Then $x \in (A - B)$ or $x \in (B - A)$ or $x \in (A \cap B)$. So we will consider these three cases. Case I: $x \in (A - B)$. Then $x \in A$, therefore $x \in A \cup B$. Case II: $x \in (B - A)$. Then $x \in B$, therefore $x \in A \cup B$. Case III: $x \in (A \cap B)$. Then $x \in A$, therefore $x \in A \cup B$.
- 4.22. First we will prove that if $A \cap B = A$, then $A \subset B$. Let $x \in A$. Since $A \cap B = A$, $x \in A \cap B$. Therefore $x \in B$, so $A \subset B$. Next we will prove that if $A \subset B$, then $A \cap B = A$. To show $A \cap B = A$, we have to show that $A \cap B \subset A$ and $A \subset A \cap B$. The first inclusion holds because if $x \in A \cap B$, then $x \in A$. To show the second inclusion, let $x \in A$. Since $A \subset B$, by definition $x \in B$. Then $x \in A \cap B$.
- 4.23. (b) Let $A = \{1, 2\}, B = \emptyset, C = \{1\}$. Then $A \cup B = \{1, 2\}$ and $A \cup C = \{1, 2\}$, but $B \neq C$.

- (c) Assume that $A \cap B = A \cap C$ and $A \cup B = A \cup C$. First we will show that $B \subset C$. Let $x \in B$. Since either $x \in A$ or $x \notin A$, we will consider two cases. Case I: $x \in A$. Then $x \in A \cap B$, therefore $x \in A \cap C$. It follows that $x \in C$. Case II: $x \notin A$. Since $x \in B$, $x \in A \cup B$. Therefore $x \in A \cup C$. Then $x \in A$ or $x \in C$. Since $x \notin A$, it follows that $x \in C$. The proof of $C \subset B$ is similar.
- 4.24. Let $A \cup B \neq \emptyset$. Then there exists an element $x \in A \cup B$. By definition, $x \in A$ or $x \in B$. If $x \in A$, then $A \neq \emptyset$. If $x \in B$, then $B \neq \emptyset$.
- 4.27. First we will show that $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$. Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in (B \cup C)$. Than $x \in B$ or $x \in C$. If $x \in B$, then $x \in (A \cap B)$, and therefore $x \in (A \cap B) \cup (A \cap C)$. If $x \in C$, then $x \in (A \cap C)$, and therefore $x \in (A \cap B) \cup (A \cap C)$. Next we will show that $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$. Let $x \in (A \cap B) \cup (A \cap C)$. Then $x \in (A \cap B)$ or $x \in (A \cap C)$. If $x \in (A \cap B)$, then $x \in A$ and $x \in B$, therefore $x \in (B \cup C)$, and thus $x \in A \cap (B \cup C)$. If $x \in (A \cap C)$, then $x \in A$ and $x \in C$ therefore $x \in (B \cup C)$, and thus $x \in A \cap (B \cup C)$.
- 4.28. First we will show that $\overline{A \cap B} \subset \overline{A} \cup \overline{B}$. Let $x \in \overline{A \cap B}$. Then $x \notin A \cap B$. Therefore $x \notin A$ or $x \notin B$, i.e. $x \in \overline{A}$ or $x \in \overline{B}$. It follows that $x \in \overline{A} \cup \overline{B}$. Next we will show that $\overline{A} \cup \overline{B} \subset \overline{A \cap B}$. Let $x \in \overline{A} \cup \overline{B}$. Then $x \in \overline{A}$ or $x \in \overline{B}$, so $x \notin A$ or $x \notin B$. Since x is not in both A and B, $x \notin A \cap B$. Therefore $x \in \overline{A \cap B}$.
- 4.37. First we will show that $(A \times B) \cap (C \times D) \subset (A \cap C) \times (B \cap D)$. Let $x \in (A \times B) \cap (C \times D)$. Then $x \in (A \times B)$ and $x \in (C \times D)$. Therefore x = (y, z) where $y \in A$, $z \in B$, $y \in C$, and $z \in D$. This implies that $y \in (A \cap C)$ and $z \in (B \cap D)$, thus $x = (y, z) \in (A \cap C) \times (B \cap D)$.

Next we will show that $(A \cap C) \times (B \cap D) \subset (A \times B) \cap (C \times D)$. Let $x \in (A \cap C) \times (B \cap D)$. Then x = (y, z) where $y \in (A \cap C)$ and $z \in (B \cap D)$. Therefore $y \in A$, $y \in C$, $z \in B$, and $z \in D$. This implies that $(y, z) \in (A \times B)$ and $(y, z) \in (C \times D)$, thus $x = (y, z) \in (A \times B) \cap (C \times D)$.