Homework 8 - Solutions

5.2. Assume that there is a smallest positive irrational number, say, x. Since $2=\frac{2}{1} \in \mathbb{Q}$, by problem 5.8, $\frac{x}{2}$ is irrational. Also, $0<\frac{1}{2}<1$ implies $0<\frac{x}{2}<x$, so x is not a smallest positive irrational number. Contradiction.
5.4. Assume that there exist odd integers a and b such that $4 \mid\left(a^{2}+b^{2}\right)$. Then $a=$ $2 k+1, b=2 l+1$, and $a^{2}+b^{2}=4 m$ for sime $k, l, m \in \mathbb{Z}$. It follows that $(2 k+1)^{2}+(2 l+1)^{2}=4 m$. Equivalently, $4 k^{2}+4 k+4 l^{2}+4 l+2=4 m$. Therefore $k^{2}+k+l^{2}+l+\frac{1}{2}=m$. Since $k^{2}+k+l^{2}+l+\frac{1}{2} \notin \mathbb{Z}$ and $m \in \mathbb{Z}$, we have a contradiction.
5.6. Assume that 1000 can be written as the sum of three integers, an enen number of which are even. We will consider two cases.

Case I: Zero of the three integers are even, i.e. all three are odd. Let $1000=x+y+z$ where x, y, and z are odd integers. Then $x=2 k+1, y=2 l+1$, and $z=2 m+1$ for some $k, l, m \in \mathbb{Z}$. Then $1000=2 k+1+2 l+1+2 m+1$. Dividing both sides of this equiation by 2 gives $500=k+l+m+1.5$. Since $500 \in \mathbb{Z}$ and $k+l+m+1.5 \notin \mathbb{Z}$, we have a contradiction.

Case II: Two of the three integers are even, and one is odd. Let $1000=x+y+z$ where x and y are even and z is odd. Then $x=2 k, y=2 l$, and $z=2 m+1$ for some $k, l, m \in \mathbb{Z}$. Then $1000=2 k+2 l+2 m+1$. Dividing both sides of this equiation by 2 gives $500=k+l+m+0.5$. Since $500 \in \mathbb{Z}$ and $k+l+m+0.5 \notin \mathbb{Z}$, we have a contradiction.
5.8. Assume that there exist an irrational number x and a nonzero rational number r such that $\frac{x}{r}$ is rational. Then $r=\frac{k}{l}$ and $\frac{x}{r}=\frac{m}{n}$ for some $k, l, m, n \in \mathbb{Z}, l \neq 0$, $n \neq 0$. It follows that $x=\frac{m}{n} r=\frac{m k}{n l}$. Since $m k, n l \in \mathbb{Z}$ and $n l \neq 0, x$ is rational. We get a contradiction.
5.10. Lemma. Let $a \in \mathbb{Z}$. If $3 \mid a^{2}$, then $3 \mid a$.

Proof (by contrapositive). Let $3 \chi a$. We will show that $3 \not \chi^{2}$.
Since $3 \not \backslash a$, then either $a=3 k+1$ or $a=3 k+2$ for some integer k. In the first case, $a^{2}=(3 k+1)^{2}=9 k^{2}+6 k+1=3\left(3 k^{2}+2 k\right)+1$, thus $3 \chi a^{2}$. In the second case, $a^{2}=(3 k+2)^{2}=9 k^{2}+12 k+4=3\left(3 k^{2}+4 k+1\right)+1$, thus, again, $3 \not a^{2}$.
Now we will prove that $\sqrt{3}$ is irrational. Suppose $\sqrt{3}$ is rational, then $\sqrt{3}=\frac{m}{n}$, where $m, n \in \mathbb{Z}, n \neq 0$, and m and n are relatively prime (i.e. $\frac{m}{n}$ is in lowest possible terms). Squaring both sides of the above equation gives $3=\frac{m^{2}}{n^{2}}$, so $3 n^{2}=m^{2}$. Thus $3 \mid m^{2}$. By the above lemma, $3 \mid m$, so $m=3 k$ for some $k \in \mathbb{Z}$.

Then we have $3 n^{2}=9 k^{2}$, or $n^{2}=3 k^{2}$. Now we see that $3 \mid n^{2}$, and by the above lemma, $3 \mid n$. Since both m and n are divisible by 3 , they are not relatively prime (i.e. the fraction $\frac{m}{n}$ is not in lowest possible terms). Contradiction.
5.14. Assume that there exists a positive integer x such that $2 x<x^{2}<3 x$. Then $2<x<3$. Since there are no integers larger than 2 and smaller than 3 , we have a contradiction.
5.16. Direct proof: if n is odd, then $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $7 n-5=$ $\overline{7(2 k+1)-5}=14 k+2=2(7 k+1)$. Since $7 k+1 \in \mathbb{Z}, 7 n-5$ is even.
Proof by contrapositive: if $7 n-5$ is odd, then $7 n-5=2 k+1$ for some $k \in \mathbb{Z}$. Then $n=7 n-5-6 n+5=2 k+1-6 n+5=2 k-6 n+6=2(k-3 n+3)$. Since $k-3 n+3 \in \mathbb{Z}, n$ is even.
Proof by contradiction: suppose n is odd and $7 n-5$ is also odd. Then $n=2 k+1$ and $7 n-5=2 l+1$ for some $k, l \in \mathbb{Z}$. The first equation implies $7 n=14 k+7$. Subtracting $7 n-5=2 l+1$ from $7 n=14 k+7$ gives $7 n-7 n+5=14 k+7-2 l-1$, thus $5=14 k-2 l+6$, so $2.5=7 k-l+3 \in \mathbb{Z}$. Since 2.5 is not an integer, we get a contradiction.
5.20. In Case I we cannot assume that x and y are odd because it could be the case that x and z, or y and z are odd. "Without loss of generality" should be used. That is, this case should start with "two of the numbers x, y, z are odd. Without loss of generality we can assume that x and y are odd and z is even." Also, since the result mentions the parity of odd (and not even) numbers, it would be better to start Case II with "Zero (or none) of the numbers x, y, z are odd, i.e. all three are even."

