Homework 9 - Solutions

6.4. The statement is true. Consider $a=0, b=1$, and $c=2$. Then $\frac{a+b}{a+c}=\frac{1}{2}=\frac{b}{c}$.
6.6. The statement is false. If $x \in \mathbb{R}$, then $x^{2} \geq 0$ and $x^{4} \geq 0$, so $x^{4}+x^{2}+1 \geq 0+0+1=$ $1>0$, thus $x^{4}+x^{2}+1 \neq 0$.
6.10. The statement is false. Consider $x=y=z=0$. Then $z=x-y$ and z is even, but x and y are not odd.
6.12. The statement is true. For any positive rational number b, let $a=\frac{b}{\sqrt{2}}$. Since $\sqrt{2}>1$, $0<a<b$. Next we will prove (by contradiction) that a is irrational. Assume a is rational. Then $a=\frac{k}{l}$ and $b=\frac{m}{n}$ for some $k, l, m, n \in \mathbb{Z}, l \neq 0, n \neq 0$. Since both a and b are positive, we also have $k \neq 0$ and $m \neq 0$. Then $\frac{k}{l}=\frac{m}{n \sqrt{2}}$. Therefore $\sqrt{2}=\frac{l m}{k n}$. Since $l m, k n \in \mathbb{Z}$ and $k n \neq 0, \sqrt{2}$ is rational. We get a contradiction.
6.14. The statement is true. Let $n \in \mathbb{Z}$ be odd. Then $n=1+(-1)+n$ shows that n is the sum of three odd integers.
6.16. The statement is false. For example, if $A=\{1,2\}, B=\{1,3\}, C=\{1,4\}$, then $A \cap B=\{1\}=A \cap C$ but $B \neq C$.
6.18. The statement is true. For any two rational numbers a and b with $a<b$, let $r=\frac{a+b}{2}$. Since a and b are rational, $a=\frac{k}{l}$ and $b=\frac{m}{n}$ for some $k, l, m, n \in \mathbb{Z}$, $l \neq 0, n \neq 0$. Then $r=\frac{a+b}{2}=\frac{\frac{k}{l}+\frac{m}{n}}{2}=\frac{k n+m l}{2 l n}$. Since $k n+l m, 2 l n \in \mathbb{Z}$ and $2 l n \neq 0, r$ is rational. Also, $a=\frac{a+a}{2}<\frac{a+b}{2}<\frac{b+b}{2}=b$, so $a<r<b$.
6.33. The statement is true. We will consider two cases.

Case I: at least two of a, b, c are even, say, a and b are even. Then $a=2 k, b=2 l$ for some $k, l \in \mathbb{Z}$. Then $a+b=2 k+2 l=2(k+l)$. Since $k+l \in \mathbb{Z}, a+b$ is even.
Case II: at most one of a, b, c is even, then at least two of them are odd, say, a and b are odd. Then $a=2 k+1, b=2 l+1$ for some $k, l \in \mathbb{Z}$. Then $a+b=2 k+1+2 l+1=$ $2(k+l+1)$. Since $k+l+1 \in \mathbb{Z}, a+b$ is even.

Note 1: Problems 4, 10, 12, 14, 16, and 18 admit other examples. Giving one specific example is the best approach to all of these.
Note 2: For problem 6.33, a more straightforward (but a bit longer) approach is to consider four cases: all three numbers are even; two are even and one is odd; one is even and two are odd; all three are odd.

