Practice Test 1 - Solutions

1. Read the textbook!
2. (a)

(b) $A \cap B=\{2,4\}, \bar{A}=\{1,3,5,7,9\}, A \cup \bar{B}=\{0,2,4,6,7,8,9,10\}$
(c) Since A has six elements and B has five elements, $A \times B$ has $6 \cdot 5=30$ elements.
(d) $(0,1),(0,2),(10,5)$.
3. (a) Statements $A \subset D, B \in D, \emptyset \subset D$ are true. The other statements are false. (b) $|A|=|B|=|C|=1,|D|=3$.
4. First of all, let's rewrite the right endpoint: $A_{n}=\left[\frac{1}{n}, 1+\frac{1}{n}\right)$. Then the first few intervals are: $A_{1}=[1,2), A_{2}=\left[\frac{1}{2}, 1+\frac{1}{2}\right), A_{3}=\left[\frac{1}{3}, 1+\frac{1}{3}\right)$, etc. We see that the left endpoint approaches 0 and the right endpoint approaches 1 as n gets larger:

Therefore the union of these intervals is $\cup_{n \in \mathbb{N}} A_{n}=(0,2)$ and the intersection is $\cap_{n \in \mathbb{N}} A_{n}=\{1\}$.
5. (a) We will use a truth table to show that $P \Leftrightarrow Q$ and $(P \wedge Q) \vee((\neg P) \wedge(\neg Q))$ are logically equivalent.

P	Q	$P \Leftrightarrow Q$	$P \wedge Q$	$\neg P$	$\neg Q$	$(\neg P) \wedge(\neg Q)$	$(P \wedge Q) \vee((\neg P) \wedge(\neg Q))$
T	T	T	T	F	F	F	T
T	F	F	F	F	T	F	F
F	T	F	F	T	F	F	F
F	F	T	F	T	T	T	T

Since the truth values of $P \Leftrightarrow Q$ and $(P \wedge Q) \vee((\neg P) \wedge(\neg Q))$ are the same for all possible combinations of truth values of P and Q, these compound propositions are logically equivalent.
(b) The compound statement $(P \Leftrightarrow Q) \Leftrightarrow((P \wedge Q) \vee((\neg P) \wedge(\neg Q)))$ is a tautology.
(c) The compound statement $(P \Leftrightarrow Q) \Leftrightarrow \neg((P \wedge Q) \vee((\neg P) \wedge(\neg Q)))$ is a contradiction.
6. (a) \exists ! $x\left(x^{2}=8\right)$ is false: there are two values of x that satisfy $x^{2}=8$, namely, $\sqrt{8}$ and $-\sqrt{8}$.
(b) $\forall x \exists y(x y=0)$ is true: for any x we can choose $y=0$, then we have $x y=0$.
(c) $\forall x \exists!y(x y=0)$ is false: if $x=0$, then the value of y is not unique, e.g. $y=1$ and $y=2$ satisfy $x y=0$.
(d) $\exists x \forall y(x y=0)$ is true: let $x=0$, then for any y we have $x y=0$.
(e) $\exists!x \forall y(x y=0)$ is true: if $x=0$, then for any y we have $x y=0$. Also, this is the only value of x such that for any y the equation $x y=0$ is satisfied, because if $x \neq 0$, then e.g. for $y=1$ the equation $x y=0$ is not satisfied.
(f) $\forall x \forall z \exists y(x+y=z)$ is true: for any x and for any z we can choose $y=z-x$, and then we have $x+y=z$.
(g) $\forall x \exists y \forall z(x+y=z)$ is false: given x, no matter what y we choose, the value $z=x+y+1$ does not satisfy $x+y=z$.
7. In all examples below, let x and y be real numbers.
(a) • $\exists x \exists y P(x, y)$ is true if $P(x, y)$ is " $x+y=0$ " (e.g., let $x=0$ and $y=0$);

- $\exists x \exists y P(x, y)$ is false if $P(x, y)$ is " $x^{2}+y^{2}=-1$ " (there are no values of x and y that satisfy the equation because the square of any real number is nonnegative).
(b) • $\exists x \forall y P(x, y)$ is true if $P(x, y)$ is " $x y=0$ " (see problem 6(d));
- $\exists x \forall y P(x, y)$ is false if $P(x, y)$ is " $x+y=0$ " (no matter what x is, the value $y=-x+1$ does not satisfy the equation $x+y=0$).
(c) • $\forall x \exists y P(x, y)$ is true if $P(x, y)$ is " $x y=0$ " (see problem 6(b));
- $\forall x \exists y P(x, y)$ is false if $P(x, y)$ is " $x y=1$ " (if $x=0$, there is no value of y that satisfies the equation $x y=1)$.
(d) - $\forall x \forall y P(x, y)$ is true if $P(x, y)$ is " $x^{2}+y^{2} \geq 0$ " (any real number squared is nonnegative, so the left hand side is nonnegative);
- $\forall x \forall y P(x, y)$ is false if $P(x, y)$ is " $x+y=0$ " (if $x=1$ and $y=2$, the equation is not satisfied).

8. (a) We will show that for any integer n, the number $3 n^{2}+5 n$ is even. To do this, we will consider two cases:
Case I: n is even. Then $n=2 k$ for some $k \in \mathbb{Z}$, and $3 n^{2}+5 n=3(2 k)^{2}+$ $5(2 k)=12 k^{2}+10 k=2\left(6 k^{2}+5 k\right)$. Since $6 k^{2}+5 k \in \mathbb{Z}$, the number $3 n^{2}+5 n$ is even.
Case II: n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$, and $3 n^{2}+5 n=3(2 k+$ $1)^{2}+5(2 k+1)=12 k^{2}+12 k+3+10 k+5=12 k^{2}+22 k+8=2\left(6 k^{2}+11 k+4\right)$. Since $6 k^{2}+11 k+4 \in \mathbb{Z}$, the number $3 n^{2}+5 n$ is even.
Since $3 n^{2}+5 n$ is never odd, the implication follows. (This is a vacuous proof.)
(b) If n is even, then $n=2 k$ for some $k \in \mathbb{Z}$, and $3 n^{2}-2 n-5=3(2 k)^{2}-$ $2(2 k)-5=12 k^{2}-4 k-5=12 k^{2}-4 k-6+1=2\left(6 k^{2}-2 k-3\right)+1$. Since $6 k^{2}-2 k-3 \in \mathbb{Z}$, the number $3 n^{2}-2 n-5$ is odd. (This is a direct proof.)
(c) We will prove the statement by contrapositive, namely, we will prove that if n and m are of the same parity, then $n-5 m$ is even, and thus not odd.
Let's consider two cases:
Case I: n and m are both even. Then $n=2 k$ and $m=2 l$ for some $k, l \in \mathbb{Z}$. Then $n-5 m=2 k-5(2 l)=2 k-10 l=2(k-5 l)$. Since $k-5 l \in \mathbb{Z}$, the number $n-5 m$ is even.
Case II: n and m are both odd. Then $n=2 k+1$ and $m=2 l+1$ for some $k, l \in \mathbb{Z}$. Then $n-5 m=2 k+1-5(2 l+1)=2 k+1-10 l-5=2 k-10 l-4=$ $2(k-5 l-2)$. Since $k-5 l-2 \in \mathbb{Z}$, the number $n-5 m$ is even.
9. (a) For any real number $x, x^{2} \geq 0$, therefore $-x^{2} \leq 0$, and $-5-x^{2} \leq-5+0=$ $-5<0$. (This is a trivial proof.)
(b) If $|x|=5$, then either $x=5$ or $x=-5$. Thus we can consider the following two cases:
Case I: $x=5$. Then $x^{2}+x+1=5^{2}+5+1=31>20$.
Case II: $x=-5$. Then $x^{2}+x+1=(-5)^{2}+(-5)+1=21>20$.
(This is a proof by cases.)
