Practice Test 2 - Solutions

- 1. Read the textbook!
- 2. (a) If n is an integer such that 5|(n-1), then $n \equiv 1 \pmod{5}$. Then $n^3 + n 2 \equiv 1^3 + 1 2 \equiv 0 \pmod{5}$. This implies that $5|(n^3 + n 2)$. (This is a direct proof.) Another proof: If n is an integer such that 5|(n-1), then n-1 = 5k for some $k \in \mathbb{Z}$. Then n = 5k + 1, therefore $n^3 + n - 2 = (5k + 1)^3 + (5k + 1) - 2 = 125k^3 + 75k^2 + 15k + 1 + 5k + 1 - 2 = 125k^3 + 75k^2 + 20k = 5(25k^3 + 15k^2 + 4k)$. Since $25k^3 + 15k^2 + 4k \in \mathbb{Z}$, $5|(n^3 + n - 2)$. (This is also a direct proof.)
 - (b) Assume that $\log_3 2$ is rational. Then $\log_3 2 = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, n > 0$. Then $3^{\frac{m}{n}} = 2$, so $3^m = 2^n$. Since n > 0, $3^m = 2^n > 1$, so m > 0. Since $3 \equiv 1 \pmod{2}$, $3^m \equiv 1 \pmod{2}$, so 3^m is odd. However, $2^n = 2 \cdot 2^{n-1}$ is even. We get a contradiction. Therefore $\log_3 2$ is irrational. (This is a proof by contradiction.)
 - (c) We will prove this statement by contrapositive. Assume that n is odd. Then n = 2k+1 for some $k \in \mathbb{Z}$. Then $7n^2+4 = 7(2k+1)^2+4 = 7(4k^2+4k+1)+4 = 28k^2+28k+11 = 2(14k^2+14k+5)+1$. Since $14k^2+14k+5 \in \mathbb{Z}$, $7n^2+4$ is odd.
 - (d) We will prove this statement by contrapositive. Assume that $x \ge 1$. Then $x^2 \ge x$ and $x^3 \ge x$. Adding these two inequalities gives $x^2 + x^3 \ge 2x$, thus $2x \ne x^2 + x^3$.
 - (e) First we will prove that if 3|(mn), then 3|m or 3|n. We will prove this by contrapositive, namely, we will prove that if $3 \not/m$ and $3 \not/n$, then $3 \not/(mn)$. If $3 \not/m$, then m = 3k + 1 or m = 3k + 2 for some $k \in \mathbb{Z}$. If $3 \not/(n, then n = 3l + 1 \text{ or } n = 3l + 2$ for some $l \in \mathbb{Z}$. Thus we have four cases: Case I: m = 3k+1, n = 3l+1. Then mn = (3k+1)(3l+1) = 9kl+3k+3l+1 = 3(3kl + k + l) + 1. Since $3kl + k + l \in \mathbb{Z}$, $3 \not/(mn)$. Case II: m = 3k+1, n = 3l+2. Then mn = (3k+1)(3l+2) = 9kl+6k+3l+2 = 3(3kl + 2k + l) + 2. Since $3kl + 2k + l \in \mathbb{Z}$, $3 \not/(mn)$. Case III: m = 3k+2, n = 3l+1. Then mn = (3k+2)(3l+1) = 9kl+3k + 6l + 2 = 3(3kl + k + 2l) + 2. Since $3kl + k + 2l \in \mathbb{Z}$, $3 \not/(mn)$. Case IV: m = 3k + 2, n = 3l + 2. Then mn = (3k+2)(3l+2) = 9kl + 6k + 6l + 4 = 3(3kl + 2k + 2l + 1) + 1. Since $3kl + 2k + 2l + 1 \in \mathbb{Z}$, $3 \not/(mn)$. Next we will prove that if 3|m or 3|n, then 3|(mn). Here we have two cases: Case I: 3|m. Then m = 3k for some $k \in \mathbb{Z}$. Then mn = 3kn. Since $kn \in \mathbb{Z}$, 3|(mn).

<u>Case II:</u> 3|n. Then n = 3l for some $l \in \mathbb{Z}$. Then mn = m3l = 3ml. Since

 $ml \in \mathbb{Z}, 3|(mn).$ (This direction we proved directly.)

- (f) Assume that there exist a nonzero rational number x and an irrational number y such that xy is rational. Then $x = \frac{k}{l}$ for some $k, l \in \mathbb{Z}, k \neq 0$ and $l \neq 0$, and $xy = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $y = \frac{xy}{x} = \frac{\frac{m}{n}}{\frac{k}{l}} = \frac{ml}{nk}$. Since $ml, nk \in \mathbb{Z}$ and $nk \neq 0, y$ is rational. Contradiction. (This is a proof by contradiction.)
- (g) We will prove this statement by contrapositive. Namely, we will assume that a|b or a|c and we will show that a|(bc). If a|b, then b = ak for some $k \in \mathbb{Z}$, and bc = akc. Since $kc \in \mathbb{Z}$, a|(bc). If a|c, then c = ak for some $k \in \mathbb{Z}$, and bc = bak = abk. Since $bk \in \mathbb{Z}$, a|(bc).
- (h) First we will prove that if $A \cap B = \emptyset$, then $(A \times B) \cap (B \times A) = \emptyset$. We will prove this by contrapositive. Assume that $(A \times B) \cap (B \times A) \neq \emptyset$. Then there exists $x \in (A \times B) \cap (B \times A)$, thus $x \in A \times B$ and $x \in B \times A$. Therefore x = (y, z) where $y \in A, z \in B, y \in B$, and $z \in A$. Since $y \in A$ and $y \in B$, it follows that $A \cap B \neq \emptyset$. Next we will prove that if $(A \times B) \cap (B \times A) = \emptyset$, then $A \cap B = \emptyset$. We will prove this by contrapositive as well. Assume that $A \cap B \neq \emptyset$, then there exists $x \in A \cap B$, i.e. $x \in A$ and $x \in B$. Then $(x, x) \in A \times B$ and $(x, x) \in B \times A$, so $(x, x) \in (A \times B) \cap (B \times A)$. Thus $(A \times B) \cap (B \times A) \neq \emptyset$.
- 3. (a) This statement is true. For example, if a = -1, then for every real number b, we have $b^2 \ge 0 \ge -1$, so $b^2 \ge a$.
 - (b) This statement is false. For any integer *a*, either $a \le 4$ or $a \ge 5$. If $a \le 4$, then $a^3 + 2a + 3 \le 64 + 8 + 3 = 75 < 100$, so $a^3 + 2a + 3 \ne 100$. If $a \ge 5$, then $a^3 + 2a + 3 \ge 125 + 10 + 3 = 138 > 100$, so $a^3 + 2a + 3 \ne 100$.
 - (c) This statement is false. For example, if a = -1, then there is no integer b such that $b^2 = -1$.
 - (d) This statement is false. For example, $\sqrt{2} + (2 \sqrt{2}) = 2$. We know that $\sqrt{2}$ is irrational (we proved such a theorem). The fact that 2 sqrt2 is irrational can be proved by contradiction. Namely, assume that 2 sqrt2 is rational, then $2 sqrt2 = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $\sqrt{2} = 2 \frac{m}{n} = \frac{2n-m}{n}$. Since $2n m \in \mathbb{Z}$ and $n \neq 0$, sqrt2 is rational. Contradiction. Finally, $2 = \frac{2}{1}$ is rational.
 - (e) This statement is true. Let a be any irrational number. Then a = 1 + (a-1). Observe that 1 is rational, and a - 1 is irrational (the proof of this is similar to the proof given in previous problem, and is omitted here).
 - (f) This statement is true. For any sets A and B, let $C = A \cup B$. Then $A \cup C = A \cup A \cup B = A \cup B$ and $B \cup C = B \cup A \cup B = A \cup B$, so $A \cup C = B \cup C$.

- (g) This statement is false. For example, if $A = \{1\}$, $B = \{2\}$, $C = \{1, 2\}$, $D = \{2, 3\}$, then $A \subset C$, $B \subset D$, and $A \cap B = \emptyset$, however, $C \cap D \neq \emptyset$.
- (h) This statement if true. Suppose that $A \subset C$, $B \subset D$, $C \cap D = \emptyset$, but $A \cap B \neq \emptyset$. Then there is an element $x \in A \cap B$, so $x \in A$ and $x \in B$. Since $A \subset C$ and $B \subset D$, it follows that $x \in C$ and $x \in D$. Then $x \in C \cap D$, thus $C \cap D \neq \emptyset$. We get a contradiction.