Practice Test 2 - Solutions

1. Read the textbook!

2. (a) If n is an integer such that $5 \mid(n-1)$, then $n \equiv 1(\bmod 5)$. Then $n^{3}+n-2 \equiv$ $1^{3}+1-2 \equiv 0(\bmod 5)$. This implies that $5 \mid\left(n^{3}+n-2\right)$. (This is a direct proof.)
Another proof: If n is an integer such that $5 \mid(n-1)$, then $n-1=5 k$ for some $k \in \mathbb{Z}$. Then $n=5 k+1$, therefore $n^{3}+n-2=(5 k+1)^{3}+(5 k+1)-2=$ $125 k^{3}+75 k^{2}+15 k+1+5 k+1-2=125 k^{3}+75 k^{2}+20 k=5\left(25 k^{3}+15 k^{2}+4 k\right)$. Since $25 k^{3}+15 k^{2}+4 k \in \mathbb{Z}, 5 \mid\left(n^{3}+n-2\right)$. (This is also a direct proof.)
(b) Assume that $\log _{3} 2$ is rational. Then $\log _{3} 2=\frac{m}{n}$ for some $m, n \in \mathbb{Z}, n>0$. Then $3^{\frac{m}{n}}=2$, so $3^{m}=2^{n}$. Since $n>0,3^{m}=2^{n}>1$, so $m>0$. Since $3 \equiv 1(\bmod 2), 3^{m} \equiv 1(\bmod 2)$, so 3^{m} is odd. However, $2^{n}=2 \cdot 2^{n-1}$ is even. We get a contradiction. Therefore $\log _{3} 2$ is irrational. (This is a proof by contradiction.)
(c) We will prove this statement by contrapositive. Assume that n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $7 n^{2}+4=7(2 k+1)^{2}+4=7\left(4 k^{2}+4 k+1\right)+4=$ $28 k^{2}+28 k+11=2\left(14 k^{2}+14 k+5\right)+1$. Since $14 k^{2}+14 k+5 \in \mathbb{Z}, 7 n^{2}+4$ is odd.
(d) We will prove this statement by contrapositive. Assume that $x \geq 1$. Then $x^{2} \geq x$ and $x^{3} \geq x$. Adding these two inequalities gives $x^{2}+x^{3} \geq 2 x$, thus $2 x \ngtr x^{2}+x^{3}$.
(e) First we will prove that if $3 \mid(m n)$, then $3 \mid m$ or $3 \mid n$. We will prove this by contrapositive, namely, we will prove that if $3 \nless m$ and $3 \not \backslash n$, then $3 \chi(m n)$. If $3 \wedge m$, then $m=3 k+1$ or $m=3 k+2$ for some $k \in \mathbb{Z}$. If $3 \wedge n$, then $n=3 l+1$ or $n=3 l+2$ for some $l \in \mathbb{Z}$. Thus we have four cases:
Case I: $m=3 k+1, n=3 l+1$. Then $m n=(3 k+1)(3 l+1)=9 k l+3 k+3 l+1=$ $3(3 k l+k+l)+1$. Since $3 k l+k+l \in \mathbb{Z}, 3 \nmid(m n)$.
Case II: $m=3 k+1, n=3 l+2$. Then $m n=(3 k+1)(3 l+2)=9 k l+6 k+3 l+2=$ $3(3 k l+2 k+l)+2$. Since $3 k l+2 k+l \in \mathbb{Z}, 3 X(m n)$.
Case III: $m=3 k+2, n=3 l+1$. Then $m n=(3 k+2)(3 l+1)=9 k l+3 k+$ $6 l+2=3(3 k l+k+2 l)+2$. Since $3 k l+k+2 l \in \mathbb{Z}, 3 \chi(m n)$.
Case IV: $m=3 k+2, n=3 l+2$. Then $m n=(3 k+2)(3 l+2)=9 k l+6 k+$ $6 l+4=3(3 k l+2 k+2 l+1)+1$. Since $3 k l+2 k+2 l+1 \in \mathbb{Z}, 3 X(m n)$.
Next we will prove that if $3 \mid m$ or $3 \mid n$, then $3 \mid(m n)$. Here we have two cases: Case I: $3 \mid m$. Then $m=3 k$ for some $k \in \mathbb{Z}$. Then $m n=3 k n$. Since $k n \in \mathbb{Z}$, $3 \mid(m n)$.
Case II: $3 \mid n$. Then $n=3 l$ for some $l \in \mathbb{Z}$. Then $m n=m 3 l=3 m l$. Since
$m l \in \mathbb{Z}, 3 \mid(m n)$.
(This direction we proved directly.)
(f) Assume that there exist a nonzero rational number x and an irrational number y such that $x y$ is rational. Then $x=\frac{k}{l}$ for some $k, l \in \mathbb{Z}, k \neq 0$ and $l \neq 0$, and $x y=\frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $y=\frac{x y}{x}=\frac{\frac{m}{n}}{\frac{k}{l}}=\frac{m l}{n k}$. Since $m l, n k \in \mathbb{Z}$ and $n k \neq 0, y$ is rational. Contradiction. (This is a proof by contradiction.)
(g) We will prove this statement by contrapositive. Namely, we will assume that $a \mid b$ or $a \mid c$ and we will show that $a \mid(b c)$. If $a \mid b$, then $b=a k$ for some $k \in \mathbb{Z}$, and $b c=a k c$. Since $k c \in \mathbb{Z}, a \mid(b c)$. If $a \mid c$, then $c=a k$ for some $k \in \mathbb{Z}$, and $b c=b a k=a b k$. Since $b k \in \mathbb{Z}, a \mid(b c)$.
(h) First we will prove that if $A \cap B=\emptyset$, then $(A \times B) \cap(B \times A)=\emptyset$. We will prove this by contrapositive. Assume that $(A \times B) \cap(B \times A) \neq \emptyset$. Then there exists $x \in(A \times B) \cap(B \times A)$, thus $x \in A \times B$ and $x \in B \times A$. Therefore $x=(y, z)$ where $y \in A, z \in B, y \in B$, and $z \in A$. Since $y \in A$ and $y \in B$, it follows that $A \cap B \neq \emptyset$.
Next we will prove that if $(A \times B) \cap(B \times A)=\emptyset$, then $A \cap B=\emptyset$. We will prove this by contrapositive as well. Assume that $A \cap B \neq \emptyset$, then there exists $x \in A \cap B$, i.e. $x \in A$ and $x \in B$. Then $(x, x) \in A \times B$ and $(x, x) \in B \times A$, so $(x, x) \in(A \times B) \cap(B \times A)$. Thus $(A \times B) \cap(B \times A) \neq \emptyset$.
3. (a) This statement is true. For example, if $a=-1$, then for every real number b, we have $b^{2} \geq 0 \geq-1$, so $b^{2} \geq a$.
(b) This statement is false. For any integer a, either $a \leq 4$ or $a \geq 5$. If $a \leq 4$, then $a^{3}+2 a+3 \leq 64+8+3=75<100$, so $a^{3}+2 a+3 \neq 100$. If $a \geq 5$, then $a^{3}+2 a+3 \geq 125+10+3=138>100$, so $a^{3}+2 a+3 \neq 100$.
(c) This statement is false. For example, if $a=-1$, then there is no integer b such that $b^{2}=-1$.
(d) This statement is false. For example, $\sqrt{2}+(2-\sqrt{2})=2$. We know that $\sqrt{2}$ is irrational (we proved such a theorem). The fact that $2-s q r t 2$ is irrational can be proved by contradiction. Namely, assume that $2-s q r t 2$ is rational, then $2-\operatorname{sqrt} 2=\frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $\sqrt{2}=2-\frac{m}{n}=\frac{2 n-m}{n}$. Since $2 n-m \in \mathbb{Z}$ and $n \neq 0$, sqrt2 is rational. Contradiction. Finally, $2=\frac{2}{1}$ is rational.
(e) This statement is true. Let a be any irrational number. Then $a=1+(a-1)$. Observe that 1 is rational, and $a-1$ is irrational (the proof of this is similar to the proof given in previous problem, and is omitted here).
(f) This statement is true. For any sets A and B, let $C=A \cup B$. Then $A \cup C=$ $A \cup A \cup B=A \cup B$ and $B \cup C=B \cup A \cup B=A \cup B$, so $A \cup C=B \cup C$.
(g) This statement is false. For example, if $A=\{1\}, B=\{2\}, C=\{1,2\}$, $D=\{2,3\}$, then $A \subset C, B \subset D$, and $A \cap B=\emptyset$, however, $C \cap D \neq \emptyset$.
(h) This statement if true. Suppose that $A \subset C, B \subset D, C \cap D=\emptyset$, but $A \cap B \neq \emptyset$. Then there is an element $x \in A \cap B$, so $x \in A$ and $x \in B$. Since $A \subset C$ and $B \subset D$, it follows that $x \in C$ and $x \in D$. Then $x \in C \cap D$, thus $C \cap D \neq \emptyset$. We get a contradiction.
