Practice Test 2

Note: the actual test will consist of five or six questions.

1. This test is primarily on chapters 4-6, however, knowledge of previously covered material may be required. Review all terms, notations, and types of proofs in chapters 0-6.
2. Prove the following statements. Indicate what type of proof (direct, by contrapositive, or by contradiction) you used.
(a) If n is an integer such that $5 \mid(n-1)$, then $5 \mid\left(n^{3}+n-2\right)$.
(b) The number $\log _{3} 2$ is irrational.
(c) Let $n \in \mathbb{Z}$. If $7 n^{2}+4$ is even, then n is even.
(d) Let $x \in \mathbb{R}$. If $2 x>x^{2}+x^{3}$, then $x<1$.
(e) Let $m, n \in \mathbb{Z}$. Then $3 \mid(m n)$ if and only if $3 \mid m$ or $3 \mid n$.
(f) The product of a nonzero rational number and an irrational number is irrational.
(g) Let $a, b, c \in \mathbb{Z}$. If $a \not \backslash(b c)$, then $a \nmid b$ and $a \nmid c$.
(h) Let A and B be sets. Then $A \cap B=\emptyset$ if and only if $(A \times B) \cap(B \times A)=\emptyset$.
3. Prove or disprove the following statements.
(a) There exists a nonzero integer a such that for every real number $b, b^{2} \geq a$.
(b) There exists an integer a such that $a^{3}+2 a+3=100$.
(c) For any integer a there exists an integer b such that $b^{2}=a$.
(d) The sum of any two positive irrational numbers is irrational.
(e) Any irrational number is the sum of an irrational number and a positive rational number.
(f) For any sets A and B there exists a set C such that $A \cup C=B \cup C$.
(g) Let A, B, C, and D be sets such that $A \subset C$ and $B \subset D$. If $A \cap B=\emptyset$, then $C \cap D=\emptyset$.
(h) Let A, B, C, and D be sets such that $A \subset C$ and $B \subset D$. If $C \cap D=\emptyset$, then $A \cap B=\emptyset$.
