Practice Test 2

Note: the actual test will consist of five or six questions.

- 1. This test is primarily on chapters 4-6, however, knowledge of previously covered material may be required. Review all terms, notations, and types of proofs in chapters 0–6.
- 2. Prove the following statements. Indicate what type of proof (direct, by contrapositive, or by contradiction) you used.
 - (a) If n is an integer such that 5|(n-1), then $5|(n^3+n-2)$.
 - (b) The number $\log_3 2$ is irrational.
 - (c) Let $n \in \mathbb{Z}$. If $7n^2 + 4$ is even, then n is even.
 - (d) Let $x \in \mathbb{R}$. If $2x > x^2 + x^3$, then x < 1.
 - (e) Let $m, n \in \mathbb{Z}$. Then 3|(mn) if and only if 3|m or 3|n.
 - (f) The product of a nonzero rational number and an irrational number is irrational.
 - (g) Let $a, b, c \in \mathbb{Z}$. If $a \not| (bc)$, then $a \not| b$ and $a \not| c$.
 - (h) Let A and B be sets. Then $A \cap B = \emptyset$ if and only if $(A \times B) \cap (B \times A) = \emptyset$.
- 3. Prove or disprove the following statements.
 - (a) There exists a nonzero integer a such that for every real number $b, b^2 \ge a$.
 - (b) There exists an integer a such that $a^3 + 2a + 3 = 100$.
 - (c) For any integer a there exists an integer b such that $b^2 = a$.
 - (d) The sum of any two positive irrational numbers is irrational.
 - (e) Any irrational number is the sum of an irrational number and a positive rational number.
 - (f) For any sets A and B there exists a set C such that $A \cup C = B \cup C$.
 - (g) Let A, B, C, and D be sets such that $A \subset C$ and $B \subset D$. If $A \cap B = \emptyset$, then $C \cap D = \emptyset$.
 - (h) Let A, B, C, and D be sets such that $A \subset C$ and $B \subset D$. If $C \cap D = \emptyset$, then $A \cap B = \emptyset$.