Practice Test 3 - Solutions

1. Read the textbook.
2. (a) $\{(a, 1),(b, 2),(c, 3)\}$ is a relation from B to A (since it is a subset of $B \times A$). Moreover, it is a function from B to A (since each element of B is the first coordinate of exactly one pair in the relation).
(b) $\{(1, b),(1, c),(3, a),(4, b)\}$ is a relation from A to B (since it is a subset of $A \times B$), but it is not a function (e.g. since the image of 1 is not well-defined).
3. (a) The relation R is not reflexive: e.g. $(1,1) \notin R$ since $1+1 \neq 0$;
R is symmetric since if $(a, b) \in R$, then $a+b=0$, then $b+a=0$, so $(b, a) \in R$; R is not transitive: e.g. $(1,-1) \in R$ and $(-1,1) \in R$, but $(1,1) \notin R$; R is not an equivalence relation: e.g. R is not reflexive.
(b) The relation R is not reflexive: e.g. $(0,0) \notin R$ since $\frac{0}{0}$ is undefined, so it is not an element of \mathbb{Q};
R is not symmetric: e.g. $(0,1) \in R$ since $\frac{0}{1} \in \mathbb{Q}$, but $(1,0) \notin R$ since $\frac{1}{0}$ is undefined;
R is transitive since if $(a, b) \in R$ and $(b, c) \in R$, then $\frac{a}{b} \in \mathbb{Q}$ and $\frac{b}{c} \in \mathbb{Q}$, and then $\frac{a}{c} \in \mathbb{Q}$;
R is not an equivalence relation: e.g. R is not reflexive.
(c) The relation R is not reflexive: $(0,0) \notin R$ since $0 \cdot 0 \ngtr 0$;
R is symmetric since if $(a, b) \in R$, then $a b>0$, then $b a>0$, so $(b, a) \in R$;
R is transitive since if $(a, b) \in R$ and $(b, c) \in R$, then $a b>0$ and $b c>0$, then either all of a, b, and c are positive or all of them are negative; in either case, $a c>0$, so $(a, c) \in R$;
R is not an equivalence relation since R is not reflexive.
(d) The relation R is reflexive since for any $a \in \mathbb{Z}, a \equiv a(\bmod 3)$, so $(a, a) \in R$; R is symmetric since if $(a, b) \in R$, then $a \equiv b(\bmod 3)$, then $b \equiv a(\bmod 3)$, and then $(b, a) \in R$;
R is transitive since if $(a, b) \in R$ and $(b, c) \in R$, then $a \equiv b(\bmod 3)$ and $b \equiv c(\bmod 3)$, then $a \equiv c(\bmod 3)$, so $(a, c) \in R$;
R is an equivalence relation since it is reflexive, symmetric, and transitive. The equivalence classes are $[0]=\{a \in \mathbb{Z} \mid a \equiv 0(\bmod 3)\},[1]=\{a \in \mathbb{Z} \mid a \equiv$ $1(\bmod 3)\}$, and $[2]=\{a \in \mathbb{Z} \mid a \equiv 2(\bmod 3)\}$.
(e) The relation R is not reflexive: e.g. $(1,1) \notin R$ since $1 \ngtr 1$;
R is not symmetric: e.g. $(2,1) \in R$ and $(1,2) \notin R$;
R is transitive since if $(a, b) \in R$ and $(b, c) \in R$, then $a>b$ and $b>c$, then
$a>c$, so $(a, c) \in R$;
R is not an equivalence relation since R is not symmetric.
4. (a) The function f is not one-to-one: e.g. $5 \cdot 1^{2}+2=5(-1)^{2}=2$, but $1 \neq-1$; f is not onto: e.g. there is no integer n such that $5 n+2=3$ since the only real solution of this equation is $n=\frac{1}{5}$ which is not an integer;
f is not bijective: e.g. it is not one-to-one;
(b) The function f is one-to-one since if $\frac{1}{x}=\frac{1}{y}$, then $x=y$;
f is not onto: e.g. there is no natural number n such that $\frac{1}{n}=2$ since the only real solution of this equation is $n=\frac{1}{2}$ which is not a natural number; f is not bijective since it is not onto.
(c) The function f is one-to-one: let $f(x)=f(y)$ where $x, y \in \mathbb{R}$. If $f(x) \neq 0$, then $x \neq 0$ and $y \neq 0$, so $\frac{1}{x}=\frac{1}{y}$. Therefore $x=y$.
The function f is onto: let $y \in \mathbb{R}$. If $y \neq 0$, let $x=\frac{1}{y}$. Then $f(x)=\frac{1}{1 / y}=y$. If $y=0$, then $f(0)=y$.
This function is bijective since it is both one-to-one and onto.
(d) The function f is not one-to-one: e.g. $f(1)=f(0)$ but $1 \neq 0$;
f is onto since it is a continuous function with $\lim _{x \rightarrow-\infty}=-\infty$ and $\lim _{x \rightarrow \infty}=\infty$; f is not bijective since it is not one-to-one.
5. Prove or disprove the following statements.
(a) The statement is false. Counterexample: $A=B=C=\{1,2\}, f=$ $\{(1,1),(2,1)\}, g=\{(1,1),(2,2)\}, g \circ f=\{(1,1),(2,1)\}$. Here g is onto, but $g \circ f$ is not.
(b) The statement is true. Let $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in A$. Then $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Since $g \circ f$ is one-to-one, $x_{1}=x_{2}$. Thus f is one-to-one.
(Note: we did not use the fact that g is one-to-one.)
(c) The statement is false. Counterexample: $A=C=\{1\}, B=\{1,2\}, f=$ $\{(1,1)\}, g=\{(1,1),(2,1)\}, g \circ f=\{(1,1)\}$. Here both f and $g \circ f$ are one-to-one, but g is not.
6. (a) Proof by Mathematical Induction.

First we check the statement for $n=1: 1 \cdot 2=\frac{1 \cdot 2 \cdot 3}{3}$ is true.
Now suppose the statement holds for $n=k$ for some $k \in \mathbb{Z}$, i.e.
$1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+k(k+1)=\frac{k(k+1)(k+2)}{3}$.
Adding $(k+1)(k+2)$ gives
$1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+k(k+1)+(k+1)(k+2)=\frac{k(k+1)(k+2)}{3}+$
$(k+1)(k+2)=\frac{k(k+1)(k+2)+3(k+1)(k+2)}{3}=\frac{(k+1)(k+2)(k+3)}{3}$.
Thus the statement holds for $n=k+1$.
(b) Proof by Mathematical Induction.

First we check the statement for $n=1$: using the Product rule and the Chain rule, we have $f^{\prime}(x)=e^{-x}-x e^{-x}=(-1) e^{-x}(x-1)$ is true.
Now suppose the statement holds for $n=k$ for some $k \in \mathbb{Z}$, i.e.
$f^{(k)}(x)=(-1)^{k} e^{-x}(x-k)$. Differentiating both sides gives $f^{(k+1)}(x)=$ $(-1)^{k}\left(-e^{-x}(x-k)+e^{-x}\right)=(-1)^{k+1}\left(e^{-x}(x-k)-e^{-x}\right)=(-1)^{k+1} e^{-x}(x-$ $(k+1))$. Thus the statement holds for $n=k+1$.
(c) Proof by Mathematical Induction.

First we check the statement for $n=1: 5 \mid\left(1^{5}-1\right)$ is true since $5 \mid 0$.
Now suppose the statement holds for $n=k$ for some $k \in \mathbb{Z}$, i.e.
$5 \mid\left(k^{5}-k\right)$. Then $k^{5}-k=5 m$ for some $m \in \mathbb{Z}$. Therefore $(k+1)^{5}-(k+1)=$ $k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1-k-1=\left(k^{5}-k\right)+\left(5 k^{4}+10 k^{3}+10 k^{2}+\right.$ $5 k)=5 m+5\left(k^{4}+2 k^{3}+2 k^{2}+k\right)=5\left(m+k^{4}+2 k^{3}+2 k^{2}+k\right)$. Since $m+k^{4}+2 k^{3}+2 k^{2}+k \in \mathbb{Z}, 5 \mid\left((k+1)^{5}-(k+1)\right)$. Thus the statement holds for $n=k+1$.

