
MATH 111 Fall 2007

Practice Test 3 - Solutions

1. Read the textbook.

2. (a) {(a, 1), (b, 2), (c, 3)} is a relation from B to A (since it is a subset of B ×A).
Moreover, it is a function from B to A (since each element of B is the first
coordinate of exactly one pair in the relation).

(b) {(1, b), (1, c), (3, a), (4, b)} is a relation from A to B (since it is a subset of
A×B), but it is not a function (e.g. since the image of 1 is not well-defined).

3. (a) The relation R is not reflexive: e.g. (1, 1) 6∈ R since 1 + 1 6= 0;
R is symmetric since if (a, b) ∈ R, then a+b = 0, then b+a = 0, so (b, a) ∈ R;
R is not transitive: e.g. (1,−1) ∈ R and (−1, 1) ∈ R, but (1, 1) 6∈ R;
R is not an equivalence relation: e.g. R is not reflexive.

(b) The relation R is not reflexive: e.g. (0, 0) 6∈ R since
0

0
is undefined, so it is

not an element of Q;

R is not symmetric: e.g. (0, 1) ∈ R since
0

1
∈ Q, but (1, 0) 6∈ R since

1

0
is

undefined;

R is transitive since if (a, b) ∈ R and (b, c) ∈ R, then
a

b
∈ Q and

b

c
∈ Q, and

then
a

c
∈ Q;

R is not an equivalence relation: e.g. R is not reflexive.

(c) The relation R is not reflexive: (0, 0) 6∈ R since 0 · 0 6> 0;
R is symmetric since if (a, b) ∈ R, then ab > 0, then ba > 0, so (b, a) ∈ R;
R is transitive since if (a, b) ∈ R and (b, c) ∈ R, then ab > 0 and bc > 0, then
either all of a, b, and c are positive or all of them are negative; in either case,
ac > 0, so (a, c) ∈ R;
R is not an equivalence relation since R is not reflexive.

(d) The relation R is reflexive since for any a ∈ Z, a ≡ a (mod 3), so (a, a) ∈ R;
R is symmetric since if (a, b) ∈ R, then a ≡ b (mod 3), then b ≡ a (mod 3),
and then (b, a) ∈ R;
R is transitive since if (a, b) ∈ R and (b, c) ∈ R, then a ≡ b (mod 3) and
b ≡ c (mod 3), then a ≡ c (mod 3), so (a, c) ∈ R;
R is an equivalence relation since it is reflexive, symmetric, and transitive.
The equivalence classes are [0] = {a ∈ Z | a ≡ 0 (mod 3)}, [1] = {a ∈ Z | a ≡
1 (mod 3)}, and [2] = {a ∈ Z | a ≡ 2 (mod 3)}.

(e) The relation R is not reflexive: e.g. (1, 1) 6∈ R since 1 6> 1;
R is not symmetric: e.g. (2, 1) ∈ R and (1, 2) 6∈ R;
R is transitive since if (a, b) ∈ R and (b, c) ∈ R, then a > b and b > c, then
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a > c, so (a, c) ∈ R;
R is not an equivalence relation since R is not symmetric.

4. (a) The function f is not one-to-one: e.g. 5 · 12 + 2 = 5(−1)2 = 2, but 1 6= −1;
f is not onto: e.g. there is no integer n such that 5n + 2 = 3 since the only
real solution of this equation is n = 1

5
which is not an integer;

f is not bijective: e.g. it is not one-to-one;

(b) The function f is one-to-one since if 1
x

= 1
y
, then x = y;

f is not onto: e.g. there is no natural number n such that 1
n

= 2 since the
only real solution of this equation is n = 1

2
which is not a natural number;

f is not bijective since it is not onto.

(c) The function f is one-to-one: let f(x) = f(y) where x, y ∈ R. If f(x) 6= 0,
then x 6= 0 and y 6= 0, so 1

x
= 1

y
. Therefore x = y.

The function f is onto: let y ∈ R. If y 6= 0, let x = 1
y
. Then f(x) = 1

1/y
= y.

If y = 0, then f(0) = y.
This function is bijective since it is both one-to-one and onto.

(d) The function f is not one-to-one: e.g. f(1) = f(0) but 1 6= 0;
f is onto since it is a continuous function with lim

x→−∞
= −∞ and lim

x→∞
= ∞;

f is not bijective since it is not one-to-one.

5. Prove or disprove the following statements.

(a) The statement is false. Counterexample: A = B = C = {1, 2}, f =
{(1, 1), (2, 1)}, g = {(1, 1), (2, 2)}, g ◦ f = {(1, 1), (2, 1)}. Here g is onto,
but g ◦ f is not.

(b) The statement is true. Let f(x1) = f(x2) for some x1, x2 ∈ A. Then
g(f(x1)) = g(f(x2)). Since g ◦ f is one-to-one, x1 = x2. Thus f is one-
to-one.
(Note: we did not use the fact that g is one-to-one.)

(c) The statement is false. Counterexample: A = C = {1}, B = {1, 2}, f =
{(1, 1)}, g = {(1, 1), (2, 1)}, g ◦ f = {(1, 1)}. Here both f and g ◦ f are
one-to-one, but g is not.

6. (a) Proof by Mathematical Induction.
First we check the statement for n = 1: 1 · 2 = 1·2·3

3
is true.

Now suppose the statement holds for n = k for some k ∈ Z, i.e.

1 · 2 + 2 · 3 + 3 · 4 + . . . + k(k + 1) =
k(k + 1)(k + 2)

3
.

Adding (k + 1)(k + 2) gives

1 · 2 + 2 · 3 + 3 · 4 + . . . + k(k + 1) + (k + 1)(k + 2) =
k(k + 1)(k + 2)

3
+

(k + 1)(k + 2) =
k(k + 1)(k + 2) + 3(k + 1)(k + 2)

3
=

(k + 1)(k + 2)(k + 3)

3
.

Thus the statement holds for n = k + 1.
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(b) Proof by Mathematical Induction.
First we check the statement for n = 1: using the Product rule and the Chain
rule, we have f ′(x) = e−x − xe−x = (−1)e−x(x− 1) is true.
Now suppose the statement holds for n = k for some k ∈ Z, i.e.
f (k)(x) = (−1)ke−x(x − k). Differentiating both sides gives f (k+1)(x) =
(−1)k(−e−x(x − k) + e−x) = (−1)k+1(e−x(x − k) − e−x) = (−1)k+1e−x(x −
(k + 1)). Thus the statement holds for n = k + 1.

(c) Proof by Mathematical Induction.
First we check the statement for n = 1: 5|(15 − 1) is true since 5|0.
Now suppose the statement holds for n = k for some k ∈ Z, i.e.
5|(k5−k). Then k5−k = 5m for some m ∈ Z. Therefore (k +1)5− (k +1) =
k5 + 5k4 + 10k3 + 10k2 + 5k + 1 − k − 1 = (k5 − k) + (5k4 + 10k3 + 10k2 +
5k) = 5m + 5(k4 + 2k3 + 2k2 + k) = 5(m + k4 + 2k3 + 2k2 + k). Since
m + k4 + 2k3 + 2k2 + k ∈ Z, 5|((k + 1)5− (k + 1)). Thus the statement holds
for n = k + 1.
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