MATH 111 Fall 2007

Practice Test 3 - Solutions

1. Read the textbook.

2.

3.

(a)

(b)
(a)

{(a,1),(b,2),(c,3)} is a relation from B to A (since it is a subset of B x A).
Moreover, it is a function from B to A (since each element of B is the first
coordinate of exactly one pair in the relation).

{(1,b),(1,¢),(3,a),(4,b)} is a relation from A to B (since it is a subset of
A x B), but it is not a function (e.g. since the image of 1 is not well-defined).
The relation R is not reflexive: e.g. (1,1) € R since 1 4+ 1 # 0;

R is symmetric since if (a,b) € R, then a+b = 0, then b+a = 0, so (b,a) € R;
R is not transitive: e.g. (1,—1) € Rand (—1,1) € R, but (1,1) € R;

R is not an equivalence relation: e.g. R is not reflexive.

The relation R is not reflexive: e.g. (0,0) ¢ R since g is undefined, so it is
not an element of Q;

R is not symmetric: e.g. (0,1) € R since g € Q, but (1,0) € R since % is
undefined;

b
R is transitive since if (a,b) € R and (b, c) € R, then % € Q and - € Q, and
then < e Q;
c

R is not an equivalence relation: e.g. R is not reflexive.

The relation R is not reflexive: (0,0) & R since 0 -0 % 0;

R is symmetric since if (a,b) € R, then ab > 0, then ba > 0, so (b,a) € R;

R is transitive since if (a,b) € R and (b, c) € R, then ab > 0 and be > 0, then
either all of a, b, and ¢ are positive or all of them are negative; in either case,
ac >0, so (a,c) € R;

R is not an equivalence relation since R is not reflexive.

The relation R is reflexive since for any a € Z, a = a (mod 3), so (a,a) € R;
R is symmetric since if (a,b) € R, then a = b (mod 3), then b = a (mod 3),
and then (b,a) € R;

R is transitive since if (a,b) € R and (b,c¢) € R, then a = b (mod 3) and
b = ¢ (mod 3), then a = ¢ (mod 3), so (a,c) € R;

R is an equivalence relation since it is reflexive, symmetric, and transitive.
The equivalence classes are [0] = {a € Z |a =0 (mod 3)}, (1] ={a € Z | a =
1 (mod 3)}, and 2] ={a € Z | a = 2 (mod 3)}.

The relation R is not reflexive: e.g. (1,1) € R since 1 # 1;
R is not symmetric: e.g. (2,1) € R and (1,2) € R;
R is transitive since if (a,b) € R and (b,c) € R, then a > b and b > ¢, then
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a>c, so (a,c) € R,
R is not an equivalence relation since R is not symmetric.

4. (a) The function f is not one-to-one: e.g. 512+ 2 =5(—1)> =2, but 1 # —1;
f is not onto: e.g. there is no integer n such that 5n + 2 = 3 since the only
real solution of this equation is n = % which is not an integer;

f is not bijective: e.g. it is not one-to-one;
(b) The function f is one-to-one since if % =1 then z =y;
Yy
f is not onto: e.g. there is no natural number n such that %L = 2 since the

only real solution of this equation is n = % which is not a natural number;
f is not bijective since it is not onto.

(¢) The function f is one-to-one: let f(z) = f(y) where z,y € R. If f(z) # 0,
then x # 0 and y # 0, so % = i Therefore x = y.
The function f is onto: let y € R. If y #£ 0, let z = i Then f(z) = <+ =v.

1/y
If y =0, then f(0) =y.
This function is bijective since it is both one-to-one and onto.
(d) The function f is not one-to-one: e.g. f(1) = f(0) but 1 # 0;
f is onto since it is a continuous function with lim = —oo and lim = oo;

f is not bijective since it is not one-to-one.
5. Prove or disprove the following statements.

(a) The statement is false. Counterexample: A = B = C = {1,2}, f =
(L1, 2D} g = (L1, (22}, go f = {(1L1), (2 1)}. Here g is onto,
but g o f is not.

(b) The statement is true. Let f(z1) = f(x2) for some xy,29 € A. Then
g(f(z1)) = g(f(x2)). Since g o f is one-to-one, x; = x9. Thus f is one-
to-one.

(Note: we did not use the fact that g is one-to-one.)

(c) The statement is false. Counterexample: A = C = {1}, B = {1,2}, f =
{(1,D}, g = {(1,1),(2,1)}, go f = {(1,1)}. Here both f and g o f are
one-to-one, but g is not.

6. (a) Proof by Mathematical Induction.
First we check the statement forn =1: 1-2 = % is true.

Now suppose the statement holds for n = k for some k € 7Z, i.e.
k(k+1)(k+2
1-242-34+3-4+... +k(k+1)= (kt D)k + ).

3
Adding (k + 1)(k + 2) gives

1-242-343-4+...+kk+D)+(k+1)(k+2) =

1)k +2) = F(k+1)(k+2) +3(k+1)(k+2) _ (k+1)(k +32)(k+3)‘
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Thus the statement holds for n = k + 1.

Bk 1)(k+2)




(b)

Proof by Mathematical Induction.

First we check the statement for n = 1: using the Product rule and the Chain
rule, we have f'(x) = e —xe ™ = (—1)e *(z — 1) is true.

Now suppose the statement holds for n = k for some k € 7Z, i.e.

f®)(x) = (=1)*e~®(x — k). Differentiating both sides gives f*+V(z) =
(—Df(—e(x — k) +e7%) = (=DM e(z — k) —e7®) = (1) e ?(z —
(k+1)). Thus the statement holds for n = k + 1.

Proof by Mathematical Induction.

First we check the statement for n = 1: 5|(1° — 1) is true since 50.

Now suppose the statement holds for n = k for some k € 7Z, i.e.

5/(k*> — k). Then k° — k = 5m for some m € Z. Therefore (k+1)°— (k+1) =
k® + 5k + 10k3 + 10k + 5k +1 — k — 1 = (k®> — k) + (5k* + 10k + 10k> +
5k) = 5m + 5(k* + 2k3 + 2k* + k) = 5(m + k* + 2k + 2k* + k). Since
m+k*+2k3 +2k* + k € Z, 5|/((k+1)° — (k+1)). Thus the statement holds
forn =k+ 1.



