Practice Test 3

Note: the actual test will consist of five or six questions.

1. This test is primarily on chapters $7-9$, however, knowledge of previously covered material may be required. Review all terms, notations, and types of proofs in chapters 0-9.
2. Let $A=\{1,2,3,4\}$ and $B=\{a, b, c\}$. Which of the following are relations from A to B or relations from B to A ? Which of them are functions?
(a) $\{(a, 1),(b, 2),(c, 3)\}$
(b) $\{(1, b),(1, c),(3, a),(4, b)\}$
3. Determine which of the following relations are reflexive; symmetric; transitive. Which of them are equivalence relations? For those that are, describe the distinct equivalence classes.
(a) Relation R on set \mathbb{Z} defined by $(a, b) \in R$ iff $a+b=0$.
(b) Relation R on set \mathbb{R} defined by $(a, b) \in R$ iff $\frac{a}{b} \in \mathbb{Q}$.
(c) Relation R on set \mathbb{R} defined by $(a, b) \in R$ iff $a b>0$.
(d) Relation R on set \mathbb{Z} defined by $(a, b) \in R$ iff $a \equiv b(\bmod 3)$.
(e) Relation R on set \mathbb{Q} defined by $(a, b) \in R$ iff $a>b$.
4. Determine which of the following functions are one-to-one; onto; bijective.
(a) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n)=5 n^{2}+2$.
(b) $f: \mathbb{N} \rightarrow \mathbb{R}$ defined by $f(n)=\frac{1}{n}$.
(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{ll}\frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$.
(d) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}-x$.
5. Prove or disprove the following statements.
(a) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. If g is onto, then $g \circ f$ is onto.
(b) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. If both g and $g \circ f$ are one-to-one, then f is one-to-one.
(c) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. If both f and $g \circ f$ are one-to-one, then g is one-to-one.
6. Use Mathematical Induction to prove the following statements.
(a) Let $n \in \mathbb{N}$. Then $1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+n(n+1)=\frac{n(n+1)(n+2)}{3}$.
(b) Let $f(x)=x e^{-x}$. Then $f^{(n)}(x)=(-1)^{n} e^{-x}(x-n)$ for every positive integer n.
(c) Let $n \in \mathbb{N}$. Then $5 \mid\left(n^{5}-n\right)$.
