MATH 111

Practice Test 3

Note: the actual test will consist of five or six questions.

- 1. This test is primarily on chapters 7-9, however, knowledge of previously covered material may be required. Review all terms, notations, and types of proofs in chapters 0-9.
- 2. Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Which of the following are relations from A to B or relations from B to A? Which of them are functions?
 - (a) $\{(a, 1), (b, 2), (c, 3)\}$
 - (b) $\{(1, b), (1, c), (3, a), (4, b)\}$
- 3. Determine which of the following relations are reflexive; symmetric; transitive. Which of them are equivalence relations? For those that are, describe the distinct equivalence classes.
 - (a) Relation R on set \mathbb{Z} defined by $(a, b) \in R$ iff a + b = 0.
 - (b) Relation R on set \mathbb{R} defined by $(a, b) \in R$ iff $\frac{a}{b} \in \mathbb{Q}$.
 - (c) Relation R on set \mathbb{R} defined by $(a, b) \in R$ iff ab > 0.
 - (d) Relation R on set \mathbb{Z} defined by $(a, b) \in R$ iff $a \equiv b \pmod{3}$.
 - (e) Relation R on set \mathbb{Q} defined by $(a, b) \in R$ iff a > b.
- 4. Determine which of the following functions are one-to-one; onto; bijective.
 - (a) $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = 5n^2 + 2$.
 - (b) $f : \mathbb{N} \to \mathbb{R}$ defined by $f(n) = \frac{1}{n}$.
 - (c) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$.
 - (d) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 x$.
- 5. Prove or disprove the following statements.
 - (a) Let $f: A \to B$ and $g: B \to C$ be two functions. If g is onto, then $g \circ f$ is onto.
 - (b) Let $f : A \to B$ and $g : B \to C$ be two functions. If both g and $g \circ f$ are one-to-one, then f is one-to-one.
 - (c) Let $f : A \to B$ and $g : B \to C$ be two functions. If both f and $g \circ f$ are one-to-one, then g is one-to-one.
- 6. Use Mathematical Induction to prove the following statements.
 - (a) Let $n \in \mathbb{N}$. Then $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n(n+1) = \frac{n(n+1)(n+2)}{3}$.
 - (b) Let $f(x) = xe^{-x}$. Then $f^{(n)}(x) = (-1)^n e^{-x}(x-n)$ for every positive integer n.
 - (c) Let $n \in \mathbb{N}$. Then $5|(n^5 n)$.