MATH 111 Test 1 - Solutions

- 1. Let $A = \{x \in \mathbb{N} \mid x \ge 4\}$ and $B = \{x \in \mathbb{N} \mid 3 \le x \le 6\}$, and let \mathbb{N} be the universal set. Determine the following sets:
 - (a) $A \cap B = \{x \in \mathbb{N} \mid 4 \le x \le 6\} = \{4, 5, 6\}$ (b) $\overline{A} = \{x \in \mathbb{N} \mid x < 4\} = \{1, 2, 3\}$ (c) $\overline{A} \cup B = \{x \in \mathbb{N} \mid x \le 6\} = \{1, 2, 3, 4, 5, 6\}$
- 2. Let P and Q be propositions. Prove that the compound propositions $Q \Rightarrow \neg P$ and $\neg (P \land Q)$ are logically equivalent.

We construct the truth table:

P	Q	$\neg P$	$Q \Rightarrow \neg P$	$P \wedge Q$	$\neg (P \land Q)$
T	Т	F	F	T	F
T	F	F	T	F	T
F	Т	Т	T	F	Т
F	\overline{F}	Т	Т	F	T

We see that for any combination of truth values of P and Q, $Q \Rightarrow \neg P$ and $\neg (P \land Q)$ have the same truth values. Therefore these compound propositions are logically equivalent.

- 3. Let C(x, y) denote "x and y are taking a class together" where x and y are students at Fresno State. Write in words the following statements and determine their truth values. Explain your reasons!
 - (a) $\forall x \forall y C(x, y)$

Every two Fresno State students are taking a class together. This statement is false, e.g. I and my friend Jon are both Fresno State students, but we are not taking a class together (or something like this; giving a specific example would be most convincing).

(b) $\exists x \forall y C(x, y)$

There is a student at Fresno State who is taking a class together with every Fresno State student. This statement is false, because I believe that no one is taking more than 20 classes, and there is no class that contains more than 1,000 students, so no one can take a class with more than 20,000 students. However, there are more than 20,000 students at Fresno State (or something like this; you probably won't be able to give a rigorous proof here, but you should explain your reason.)

(c) $\forall x \exists y C(x, y)$

Every Fresno State student is taking a class with some Fresno State student. Solution 1: If we assume that every class has at least two students or we allow y = x, then this statement is true. Solution 2: False, because some students are only taking one independent study class in which they are the only student, and saying that "x and x are taking a class together" would be grammatically incorrect. Therefore there is a student who is not taking a class with anybody else.

- 4. Let $S = \{1, 2\}$ and $T = \{2, 3, 4\}$. List the elements of $S \times T$. (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)
- 5. Prove the following propositions. For each one, indicate what type of proof you are using.
 - Let n ∈ Z. If 4n + 5 is even, then 7n² 3n + 8 is odd.
 Since 4n+5 = 2(2n+2)+1 and 2n+2 ∈ Z, 4n+5 is odd. Therefore the implication is true.
 This is a vacuous proof.
 - Let $n \in \mathbb{Z}$. If n is odd, then 3n + 5 is even. If n is odd, then n = 2k + 1 for some $k \in \mathbb{Z}$. Then 3n + 5 = 3(2k + 1) + 5 = 6k + 8 = 2(3k + 4). Since $3k + 4 \in \mathbb{Z}$, 3n + 5 is even. This is a direct proof.
 - Let n ∈ Z. If 3n + 5 is even, then n is odd. We will prove the contrapositive proposition, i.e. that if n is even, then 3n + 5 is odd. If n is even, then n = 2k for some k ∈ Z. Then 3n + 5 = 3(2k) + 5 = 6k + 5 = 2(3k + 2) + 1. Since 3k + 3 ∈ Z, 3n + 5 is odd. This is a proof by contrapositive.
- 6. (For extra credit) If |A| = 21, |B| = 19, |C| = 17, $|A \cap B| = 9$, $|A \cap C| = 8$, $|B \cap C| = 7$, $|(A \cap B) C| = 6$, find $|A \cup B \cup C|$.

Since $|A \cap B| = 9$ and $|(A \cap B) - C| = 6$, $|A \cap B \cap C| = 9 - 6 = 3$. Since $|A \cap C| = 8$, $|(A \cap C) - B| = 8 - 3 = 5$. Since $|B \cap C| = 7$, $|(B \cap C) - A| = 7 - 3 = 4$. Since |A| = 21, |A - B - C| = 21 - 6 - 3 - 5 = 7. Since |B| = 19, |B - A - C| = 19 - 6 - 3 - 4 = 6. Since |C| = 17, |C - A - B| = 17 - 5 - 3 - 4 = 5. Then $|A \cup B \cup C| = 7 + 6 + 6 + 5 + 3 + 4 + 5 = 36$ (see diagram below).

