MATH 111

Test 1

October 2, 2007

Name:

- No books, notes, or calculators are allowed.
- Please show all your work.

1. (9 points) Let $A=\{x \in \mathbb{N} \mid x \geq 4\}$ and $B=\{x \in \mathbb{N} \mid 3 \leq x \leq 6\}$, and let \mathbb{N} be the universal set. Determine the following sets:
(a) $A \cap B$
(b) \bar{A}
(c) $\bar{A} \cup B$
2. (7 points) Let P and Q be propositions. Prove that the compound propositions $Q \Rightarrow \neg P$ and $\neg(P \wedge Q)$ are logically equivalent.
3. (9 points) Let $C(x, y)$ denote " x and y are taking a class together" where x and y are students at Fresno State. Write in words the following statements and determine their truth values. Explain your reasons!
(a) $\forall x \forall y C(x, y)$
(b) $\exists x \forall y C(x, y)$
(c) $\forall x \exists y C(x, y)$
4. (4 points) Let $S=\{1,2\}$ and $T=\{2,3,4\}$. List the elements of $S \times T$.
5. (21 points) Prove the following propositions. For each one, indicate what type of proof you are using.

- Let $n \in \mathbb{Z}$. If $4 n+5$ is even, then $7 n^{2}-3 n+8$ is odd.
- Let $n \in \mathbb{Z}$. If n is odd, then $3 n+5$ is even.
- Let $n \in \mathbb{Z}$. If $3 n+5$ is even, then n is odd.

6. (For extra credit, 8 points) If $|A|=21,|B|=19,|C|=17,|A \cap B|=9,|A \cap C|=8$, $|B \cap C|=7,|(A \cap B)-C|=6$, find $|A \cup B \cup C|$.
