MATH 111

Test 1

October 1, 2007

Name:

- No books, notes, or calculators are allowed.
- Please show all your work.

1. (9 points) Let $A=\{x \in \mathbb{Z} \mid 0 \leq x \leq 3\}$ and $B=\{x \in \mathbb{Z} \mid x \leq 2\}$, and let \mathbb{Z} be the universal set. Determine the following sets:
(a) $A \cap B$
(b) \bar{B}
(c) $A \cup \bar{B}$
2. (7 points) Let P and Q be propositions. Prove that the compound propositions $\neg(P \wedge Q)$ and $\neg P \vee \neg Q$ are logically equivalent.
3. (12 points) Let $N(x, y)$ denote " x knows y 's name" where x and y are students at Fresno State. Write in words the following statements and predict their truth values. Explain your reasons!
(a) $\forall x \forall y N(x, y)$
(b) $\exists x \forall y N(x, y)$
(c) $\forall x \exists y N(x, y)$
(d) $\forall x \forall y(N(x, y) \Rightarrow N(y, x))$
4. (4 points) Let S and T be sets. Draw a Venn diagram of $S-T$.
5. (8 points) Which of the following propositions can be proved using a vacuous proof? Prove it (use a vacuous proof).

- Let $n \in \mathbb{Z}$. If $4 n+5$ is even, then $7 n+8$ is odd.
- Let $n \in \mathbb{Z}$. If $7 n+8$ is odd, then $4 n+5$ is even.
- Let $n \in \mathbb{Z}$. Then $4 n+5$ is even if and only if $7 n+8$ is odd.

6. (10 points) Let $n \in \mathbb{N}$. Prove that $3 n+7$ is odd if and only if n is even.
7. (For extra credit, 8 points) Prove that if sets A and B are disjoint, then $|\mathcal{P}(A \cup B)|=$ $|\mathcal{P}(A)| \cdot|\mathcal{P}(B)|$. What is $|\mathcal{P}(A \cap B)|$ in this case?
