Math 111 Test 3 – Solutions

1. Let R be an equivalence relation defined on a set A containing the elements a, b, c, and d. Prove that if $a \ R \ b, c \ R \ d$, and $a \ R \ d$, then $b \ R \ c$.

Since a R b and R is symmetric, b R a. Since b R a, a R d, and R is transitive, b R d. Since c R d and R is symmetric, d R c. Finally, since b R d, d R c, and R is transitive, we have b R c.

2. (a) Let $f: B \to C$ and $g: C \to D$ be functions such that $g \circ f$ is onto. Prove that g is onto.

Let $d \in D$. Since $g \circ f$ is onto, there exists $b \in B$ such that $(g \circ f)(b) = d$. Then g(f(b)) = d. Let c = f(b). Then $c \in C$ and g(c) = d. Therefore g is onto.

- (b) Give an example of the situation in part (a) in which f is not onto.
 Let B = {1,2}, C = {3,4,5}, D = {6,7}, f = {(1,3), (2,4)}, and g = {(3,6), (4,7), (5,7)}.
 Then f is not onto because 5 is not in the image, but g ∘ f = {(1,6), (2,7)} is onto because every element of D is in the image.
- 3. Prove that $3 + 7 + 11 + \dots + (4n 1) = n(2n + 1)$ for all $n \ge 1$.

We will prove by Mathematical Induction.

Basis step: if n = 1, then 3 = 1(2+1) is true.

Inductive step: assume that $3+7+11+\cdots+(4k-1) = k(2k+1)$ for some $k \in \mathbb{N}$. We will prove that $3+7+11+\cdots+(4(k+1)-1) = (k+1)(2(k+1)+1)$, i.e. $3+7+11+\cdots+(4k+3) = (k+1)(2k+3)$.

Observe that $3 + 7 + 11 + \dots + (4k + 3) = (3 + 7 + 11 + \dots + (4k - 1)) + (4k + 3) = k(2k + 1) + (4k + 3) = 2k^2 + k + 4k + 3 = 2k^2 + 5k + 3 = (k + 1)(2k + 3).$

- 4. Determine whether each of the following functions is one-to-one, onto, neither, or both. Prove your answers.
 - (a) f: R→ R, given by f(x) = √x² + 7.
 We will prove that the function f is neither one-to-one nor onto. It is not one-to-one because e.g. f(1) = √8 = f(-1), but 1 ≠ -1. It is not onto because e.g. 0 is not in the image as the equation √x² + 7 = 0 has no real solutions (the only solutions are those of x² = -7, i.e. x = ±√7i, but these are not real numbers).
 - (b) $f : \mathbb{R} \{3\} \to \mathbb{R} \{1\}$, given by $f(x) = \frac{x}{x-3}$.

We will prove that the function f is both one-to-one and onto. Let $f(x_1) = f(x_2)$, then $\frac{x_1}{x_1-3} = \frac{x_2}{x_2-3}$. Then $x_1(x_2-3) = x_2(x_1-3)$, i.e. $x_1x_2 - 3x_1 = x_2x_1 - 3x_2$. It follows that $-3x_1 = -3x_2$, therefore $x_1 = x_2$. Thus f is one-to-one. Next, for any $y \in \mathbb{R} - \{1\}$, let $x = \frac{3y}{y-1}$. Then $x \in \mathbb{R} - \{3\}$ (since the equation $\frac{3y}{y-1} = 3$ has no solutions) and $f(x) = f\left(\frac{3y}{y-1}\right) = \frac{\frac{3y}{y-1}}{\frac{3y}{y-1} - 3} = \frac{3y}{3y-3(y-1)} = \frac{3y}{3} = y$. Thus f is onto. 5. A relation R is defined on Z by a R b if $5a \equiv 2b \pmod{3}$. Prove that R is an equivalence relation. Determine the distinct equivalence classes.

(1) Since $5 \equiv 2 \pmod{3}$, it follows that for any $a \in \mathbb{Z}$, $5a \equiv 2a \pmod{3}$. So a R a. Thus R is reflexive.

(2) If a R b, then $5a \equiv 2b \pmod{3}$. Since $5 \equiv 2 \pmod{3}$, it follows that $5b \equiv 2b \equiv 5a \equiv 2a \pmod{3}$. So b R a. Thus R is symmetric.

(3) If a R b and b R c, then $5a \equiv 2b \pmod{3}$ and $5b \equiv 2c \pmod{3}$. Then $5a \equiv 2b \equiv 5b \equiv 2c \pmod{3}$. So a R c. Thus R is transitive.

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

The equivalence classes are:

 $[0] = \{a \in \mathbb{Z} \mid 5a \equiv 0 \pmod{3}\} = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}, \\ [1] = \{a \in \mathbb{Z} \mid 5a \equiv 2 \pmod{3}\} = \{\dots, -8, -5, -2, 1, 4, 7, 10, \dots\}, \\ [2] = \{a \in \mathbb{Z} \mid 5a \equiv 4 \pmod{3}\} = \{\dots, -7, -4, -1, 2, 5, 8, 11, \dots\}; \\ since \ [0] \cup [1] \cup [2] = \mathbb{Z}, \ these \ are \ all \ equivalence \ classes. \end{cases}$

6. Prove that $24 \mid (5^{2n} - 1)$ for every positive integer n.

We will prove by Mathematical Induction.

Basis step: if n = 1, then $24|(5^2 - 1)$ is true.

Inductive step: assume that $24|(5^{2k}-1)$ for some $k \in \mathbb{N}$. We will prove that $24|(5^{2k+2}-1)$. Since $24|(5^{2k}-1), 5^{2k}-1 \equiv 0 \pmod{24}$. Then $5^{2k+2}-1 \equiv 5^{2k} \cdot 5^2 - 1 \equiv 5^{2k} \cdot 25 - 1 \equiv 5^{2k} \cdot 1 - 1 \equiv 5^{2k} - 1 \equiv 0 \pmod{24}$. Thus $24|(5^{2k+2}-1)$.

Extra Credit

If
$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
, prove that $\alpha^{3n} = \underbrace{\alpha \circ \alpha \circ \cdots \circ \alpha}_{3n} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ for all $n \ge 1$.
Since $\alpha^3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$
 $\alpha^{3n} = (\alpha^3)^n = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}^n = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$