## Test 3 - Solutions

1. Let $R$ be an equivalence relation defined on a set $A$ containing the elements $a, b, c$, and $d$. Prove that if $a R b, c R d$, and $a R d$, then $b R c$.
Since $a R b$ and $R$ is symmetric, $b R$. Since $b R a, a R d$, and $R$ is transitive, $b R d$. Since $c R d$ and $R$ is symmetric, $d R c$. Finally, since $b R d$, $d R c$, and $R$ is transitive, we have $b R$.
2. (a) Let $f: B \rightarrow C$ and $g: C \rightarrow D$ be functions such that $g \circ f$ is onto. Prove that $g$ is onto.
Let $d \in D$. Since $g \circ f$ is onto, there exists $b \in B$ such that $(g \circ f)(b)=d$. Then $g(f(b))=d$. Let $c=f(b)$. Then $c \in C$ and $g(c)=d$. Therefore $g$ is onto.
(b) Give an example of the situation in part (a) in which $f$ is not onto. Let $B=\{1,2\}, C=\{3,4,5\}, D=\{6,7\}, f=\{(1,3),(2,4)\}$, and $g=\{(3,6),(4,7),(5,7)\}$. Then $f$ is not onto because 5 is not in the image, but $g \circ f=\{(1,6),(2,7)\}$ is onto because every element of $D$ is in the image.
3. Prove that $3+7+11+\cdots+(4 n-1)=n(2 n+1)$ for all $n \geq 1$.

We will prove by Mathematical Induction.
Basis step: if $n=1$, then $3=1(2+1)$ is true.
Inductive step: assume that $3+7+11+\cdots+(4 k-1)=k(2 k+1)$ for some $k \in \mathbb{N}$. We will prove that $3+7+11+\cdots+(4(k+1)-1)=(k+1)(2(k+1)+1)$, i.e. $3+7+11+\cdots+(4 k+3)=$ $(k+1)(2 k+3)$.
Observe that $3+7+11+\cdots+(4 k+3)=(3+7+11+\cdots+(4 k-1))+(4 k+3)=$ $k(2 k+1)+(4 k+3)=2 k^{2}+k+4 k+3=2 k^{2}+5 k+3=(k+1)(2 k+3)$.
4. Determine whether each of the following functions is one-to-one, onto, neither, or both. Prove your answers.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$, given by $f(x)=\sqrt{x^{2}+7}$.

We will prove that the function $f$ is neither one-to-one nor onto. It is not one-to-one because e.g. $f(1)=\sqrt{8}=f(-1)$, but $1 \neq-1$. It is not onto because e.g. 0 is not in the image as the equation $\sqrt{x^{2}+7}=0$ has no real solutions (the only solutions are those of $x^{2}=-7$, i.e. $x= \pm \sqrt{7}$, but these are not real numbers).
(b) $f: \mathbb{R}-\{3\} \rightarrow \mathbb{R}-\{1\}$, given by $f(x)=\frac{x}{x-3}$.

We will prove that the function $f$ is both one-to-one and onto. Let $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $\frac{x_{1}}{x_{1}-3}=\frac{x_{2}}{x_{2}-3}$. Then $x_{1}\left(x_{2}-3\right)=x_{2}\left(x_{1}-3\right)$, i.e. $x_{1} x_{2}-3 x_{1}=x_{2} x_{1}-3 x_{2}$. It follows that $-3 x_{1}=-3 x_{2}$, therefore $x_{1}=x_{2}$. Thus $f$ is one-to-one. Next, for any $y \in \mathbb{R}-\{1\}$, let $x=\frac{3 y}{y-1}$. Then $x \in \mathbb{R}-\{3\}$ (since the equation $\frac{3 y}{y-1}=3$ has no solutions) and $f(x)=f\left(\frac{3 y}{y-1}\right)=\frac{\frac{3 y}{y-1}}{\frac{3 y}{y-1}-3}=\frac{3 y}{3 y-3(y-1)}=\frac{3 y}{3}=y$. Thus $f$ is onto.
5. A relation $R$ is defined on $\mathbb{Z}$ by $a R b$ if $5 a \equiv 2 b(\bmod 3)$. Prove that $R$ is an equivalence relation. Determine the distinct equivalence classes.
(1) Since $5 \equiv 2(\bmod 3)$, it follows that for any $a \in \mathbb{Z}, 5 a \equiv 2 a(\bmod 3)$. So a $R$ a. Thus $R$ is reflexive.
(2) If $a R b$, then $5 a \equiv 2 b(\bmod 3)$. Since $5 \equiv 2(\bmod 3)$, it follows that $5 b \equiv 2 b \equiv 5 a \equiv$ $2 a(\bmod 3)$. So $b R$ a Thus $R$ is symmetric.
(3) If $a R b$ and $b R c$, then $5 a \equiv 2 b(\bmod 3)$ and $5 b \equiv 2 c(\bmod 3)$. Then $5 a \equiv 2 b \equiv 5 b \equiv$ $2 c(\bmod 3)$. So a $R$ c. Thus $R$ is transitive.
Since $R$ is reflexive, symmetric, and transitive, it is an equivalence relation.
The equivalence classes are:
$[0]=\{a \in \mathbb{Z} \mid 5 a \equiv 0(\bmod 3)\}=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$,
$[1]=\{a \in \mathbb{Z} \mid 5 a \equiv 2(\bmod 3)\}=\{\ldots,-8,-5,-2,1,4,7,10, \ldots\}$,
$[2]=\{a \in \mathbb{Z} \mid 5 a \equiv 4(\bmod 3)\}=\{\ldots,-7,-4,-1,2,5,8,11, \ldots\} ;$
since $[0] \cup[1] \cup[2]=\mathbb{Z}$, these are all equivalence classes.
6. Prove that $24 \mid\left(5^{2 n}-1\right)$ for every positive integer $n$.

We will prove by Mathematical Induction.
Basis step: if $n=1$, then $24 \mid\left(5^{2}-1\right)$ is true.
Inductive step: assume that $24 \mid\left(5^{2 k}-1\right)$ for some $k \in \mathbb{N}$. We will prove that $24 \mid\left(5^{2 k+2}-1\right)$.
Since $24 \mid\left(5^{2 k}-1\right), 5^{2 k}-1 \equiv 0(\bmod 24)$. Then $5^{2 k+2}-1 \equiv 5^{2 k} \cdot 5^{2}-1 \equiv 5^{2 k} \cdot 25-1 \equiv$ $5^{2 k} \cdot 1-1 \equiv 5^{2 k}-1 \equiv 0(\bmod 24)$. Thus $24 \mid\left(5^{2 k+2}-1\right)$.

## Extra Credit

If $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$, prove that $\alpha^{3 n}=\underbrace{\alpha \circ \alpha \circ \cdots \circ \alpha}_{3 n}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$ for all $n \geq 1$.
Since $\alpha^{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$,
$\alpha^{3 n}=\left(\alpha^{3}\right)^{n}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)^{n}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$

