Attempt all 6 problems. Unsupported work will receive no credit, and partially completed work will receive partial credit. Please turn off your cell phone! Good luck!

1. (8 points) Let R be an equivalence relation defined on a set A containing the elements a, b, c, and d. Prove that if $a R b, c R d$, and $a R d$, then $b R c$.
2. (a) (6 points) Let $f: B \rightarrow C$ and $g: C \rightarrow D$ be functions such that $g \circ f$ is onto. Prove that g is onto.
(b) (4 points) Give an example of the situation in part (a) in which f is not onto.
3. (8 points) Prove that

$$
3+7+11+\cdots+(4 n-1)=n(2 n+1)
$$

for all $n \geq 1$.
4. Determine whether each of the following functions is one-to-one, onto, neither, or both. Prove your answers.
(a) (4 points) $f: \mathbb{R} \rightarrow \mathbb{R}$, given by $f(x)=\sqrt{x^{2}+7}$.
(b) (4 points) $f: \mathbb{R}-\{3\} \rightarrow \mathbb{R}-\{1\}$, given by $f(x)=\frac{x}{x-3}$.
5. (8 points) A relation R is defined on \mathbb{Z} by $a R b$ if $5 a \equiv 2 b(\bmod 3)$. Prove that R is an equivalence relation. Determine the distinct equivalence classes.
6. (8 points) Prove that $24 \mid\left(5^{2 n}-1\right)$ for every positive integer n.

Extra Credit

(8 points) If $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$, prove that $\alpha^{3 n}=\underbrace{\alpha \circ \alpha \circ \cdots \circ \alpha}_{3 n}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$ for all $n \geq 1$.

