Math 111

Test 1

Reminder: your camera must be on for the duration of the test.

- 1. (8 pts) Consider $A = [0, \infty)$ and B = (-1, 2) to be subsets of the universal set \mathbb{R} . Determine the following sets. Give your answers in the interval notation.
 - (a) $A \cup B$
 - (b) $\overline{A} \cap B$
 - (c) A B
 - (d) $(A \cap \overline{A}) \cup B$

No justification is needed for this problem.

2. (4 pts) Let $S = \{a, b\}$ and $T = \{a, b, c\}$. List all elements of $S \times T$.

No justification is needed for this problem.

3. (6 pts) Two or more of the following compound statements are logically equivalent. Which ones? List all that apply.

i.
$$P \Rightarrow Q$$

ii. $(\neg P) \Rightarrow (\neg Q)$
iii. $(\neg Q) \Rightarrow (\neg P)$
iv. $(\neg P) \lor Q$
v. $(\neg P) \land Q$

No justification is needed for this problem.

- 4. (12 pts) Let P(x) = "x is even" and $Q(x) = "x \ge 5$ " where $x \in \mathbb{Z}$. Determine the truth values of the following statements. Provide brief justifications.
 - (a) $P(1) \Rightarrow Q(1)$ (b) $\forall x \in \mathbb{Z} (Q(x) \Rightarrow Q(x+1))$ (c) $\exists x \in \mathbb{Z} (P(x) \Leftrightarrow Q(x))$
- 5. (8 pts) Let $x \in \mathbb{R}$. Prove that if $x^2 2x + 2 < 0$, then 0 < x < 1. Write a complete proof.
- 6. (12 pts) Let $n \in \mathbb{Z}$. Prove that 3n+8 is even if and only if n is even. Write a complete proof.
- (For extra credit, 8 pts) Give an example of a compound statement that has the following truth table.

P	Q	R	Compound statement
T	T	T	F
T	T	F	T
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	F
F	F	F	F