Reminder: your camera must be on for the duration of the test.

1. (8 pts) Consider $A=[0, \infty)$ and $B=(-1,2)$ to be subsets of the universal set \mathbb{R}. Determine the following sets. Give your answers in the interval notation.
(a) $A \cup B$
(b) $\bar{A} \cap B$
(c) $A-B$
(d) $(A \cap \bar{A}) \cup B$

No justification is needed for this problem.
2. (4 pts) Let $S=\{a, b\}$ and $T=\{a, b, c\}$. List all elements of $S \times T$.
No justification is needed for this problem.
3. (6 pts) Two or more of the following compound statements are logically equivalent. Which ones? List all that apply.
i. $P \Rightarrow Q$
ii. $(\neg P) \Rightarrow(\neg Q)$
iii. $(\neg Q) \Rightarrow(\neg P)$
iv. $(\neg P) \vee Q$
v. $(\neg P) \wedge Q$

No justification is needed for this problem.
4. (12 pts) Let $P(x)=" x$ is even" and $Q(x)=$ " $x \geq 5$ " where $x \in \mathbb{Z}$. Determine the truth values of the following statements. Provide brief justifications.
(a) $P(1) \Rightarrow Q(1)$
(b) $\forall x \in \mathbb{Z}(Q(x) \Rightarrow Q(x+1))$
(c) $\exists x \in \mathbb{Z}(P(x) \Leftrightarrow Q(x))$
5. (8 pts) Let $x \in \mathbb{R}$. Prove that if $x^{2}-2 x+2<0$, then $0<x<1$. Write a complete proof.
6. (12 pts) Let $n \in \mathbb{Z}$. Prove that $3 n+8$ is even if and only if n is even. Write a complete proof.

- (For extra credit, 8 pts) Give an example of a compound statement that has the following truth table.

P	Q	R	Compound statement
T	T	T	F
T	T	F	T
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	F
F	F	F	F

