MATH 111

Final Exam

December 18, 2007

Name:

- No books, notes, or calculators are allowed.
- Please turn off your cell phones.
- Please show all your work.

1. (20 points) Prove that if $A \subset B \cup C$ and $A \cap B=\emptyset$, then $A \subset C$.
2. (20 points) Let $a \in \mathbb{Z}$. Prove that if $3 \mid a^{2}$, then $3 \mid a$.
3. (20 points) Prove or disprove the following statement:

For any integer a, there exists an integer b such that $b<a$ and $a \equiv b(\bmod 2)$.
4. (20 points) Prove or disprove the following statement:

The product of a nonzero rational number and an irrational number is irrational.
5. (29 points total) Consider the relation R defined on \mathbb{Z} by $(a, b) \in R$ iff $a b \neq 0$. Determine whether R is
(a) (8 points) reflexive,
(b) (8 points) symmetric,
(c) (8 points) transitive,
(d) (5 points) an equivalence relation.
6. (21 points total) Determine whether the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}+4 x+9$ is
(a) (8 points) one-to-one,
(b) (8 points) onto,
(c) (5 points) bijective
7. (20 points) Use Mathematical Induction to prove $1+3+5+\ldots+(2 n-1)=n^{2}$ for every positive integer n.
8. (For extra credit, 15 points) How many of the first 1000 natural numbers are solutions of both $a \equiv 2(\bmod 3)$ and $a \equiv 3(\bmod 5)$?

