MATH 111

Final Exam

December 19, 2007

Name:

- No books, notes, or calculators are allowed.
- Please turn off your cell phones.
- Please show all your work.

1. (20 points) Let $a \in \mathbb{Z}$. Prove that if $5 \mid a^{2}$, then $5 \mid a$.
2. (20 points) Prove that there is no smallest positive real number.
3. (20 points) Prove or disprove the following statement:

For any two sets A and B, there exists a set C such that $A \cup C=B \cup C$.
4. (20 points) Prove or disprove the following statement:

For any integer a, there exists an integer b such that $b<a$ and $a \equiv b(\bmod 2)$.
5. (29 points total) Consider the relation R defined on \mathbb{Z} by $(a, b) \in R$ iff $a b \geq 0$. Determine whether R is
(a) (8 points) reflexive,
(b) (8 points) symmetric,
(c) (8 points) transitive,
(d) (5 points) an equivalence relation.
6. (21 points total) Determine whether the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n)=2 n+1$ is
(a) (8 points) one-to-one,
(b) (8 points) onto,
(c) (5 points) bijective
7. (20 points) Let $r \in \mathbb{R}, r \neq 1$. Use Mathematical Induction to prove $1+r+r^{2}+\ldots+r^{n-1}=$ $\frac{1-r^{n}}{1-r}$ for every positive integer n.
8. (For extra credit, 15 points) Does there exist a bijective function from \mathbb{Q} to $\mathbb{Q}-\mathbb{Z}$? Justify your answer.

