
MATH 111

Practice Test 2 - Solutions

1. Read the textbook!

2. (a) If n is an integer such that 5|(n− 1), then n ≡ 1 (mod 5). Then n3 +n− 2 ≡
13 + 1 − 2 ≡ 0 (mod 5). This implies that 5|(n3 + n − 2). (This is a direct
proof.)
Another proof: If n is an integer such that 5|(n−1), then n−1 = 5k for some
k ∈ Z. Then n = 5k + 1, therefore n3 + n − 2 = (5k + 1)3 + (5k + 1) − 2 =
125k3+75k2+15k+1+5k+1−2 = 125k3+75k2+20k = 5(25k3+15k2+4k).
Since 25k3 + 15k2 + 4k ∈ Z, 5|(n3 + n− 2). (This is also a direct proof.)

(b) Assume that log3 2 is rational. Then log3 2 =
m

n
for some m, n ∈ Z, n > 0.

Then 3
m
n = 2, so 3m = 2n. Since n > 0, 3m = 2n > 1, so m > 0. Since

3 ≡ 1 (mod 2), 3m ≡ 1 (mod 2), so 3m is odd. However, 2n = 2 · 2n−1 is
even. We get a contradiction. Therefore log3 2 is irrational. (This is a proof
by contradiction.)

(c) We will prove this statement by contrapositive. Assume that n is odd. Then
n = 2k+1 for some k ∈ Z. Then 7n2+4 = 7(2k+1)2+4 = 7(4k2+4k+1)+4 =
28k2 + 28k + 11 = 2(14k2 + 14k + 5) + 1. Since 14k2 + 14k + 5 ∈ Z, 7n2 + 4
is odd.

(d) We will prove this statement by contrapositive. Assume that x ≥ 1. Then
x2 ≥ x and x3 ≥ x. Adding these two inequalities gives x2 + x3 ≥ 2x, thus
2x 6> x2 + x3.

(e) First we will prove that if 3|(mn), then 3|m or 3|n. We will prove this by
contrapositive, namely, we will prove that if 3 6 |m and 3 6 |n, then 3 6 |(mn).
If 3 6 |m, then m = 3k + 1 or m = 3k + 2 for some k ∈ Z. If 3 6 |n, then
n = 3l + 1 or n = 3l + 2 for some l ∈ Z. Thus we have four cases:
Case I: m = 3k+1, n = 3l+1. Then mn = (3k+1)(3l+1) = 9kl+3k+3l+1 =
3(3kl + k + l) + 1. Since 3kl + k + l ∈ Z, 3 6 |(mn).
Case II: m = 3k+1, n = 3l+2. Then mn = (3k+1)(3l+2) = 9kl+6k+3l+2 =
3(3kl + 2k + l) + 2. Since 3kl + 2k + l ∈ Z, 3 6 |(mn).
Case III: m = 3k + 2, n = 3l + 1. Then mn = (3k + 2)(3l + 1) = 9kl + 3k +
6l + 2 = 3(3kl + k + 2l) + 2. Since 3kl + k + 2l ∈ Z, 3 6 |(mn).
Case IV: m = 3k + 2, n = 3l + 2. Then mn = (3k + 2)(3l + 2) = 9kl + 6k +
6l + 4 = 3(3kl + 2k + 2l + 1) + 1. Since 3kl + 2k + 2l + 1 ∈ Z, 3 6 |(mn).
Next we will prove that if 3|m or 3|n, then 3|(mn). Here we have two cases:
Case I: 3|m. Then m = 3k for some k ∈ Z. Then mn = 3kn. Since kn ∈ Z,
3|(mn).
Case II: 3|n. Then n = 3l for some l ∈ Z. Then mn = m3l = 3ml. Since
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ml ∈ Z, 3|(mn).
(This direction we proved directly.)

(f) Assume that there exist a nonzero rational number x and an irrational number

y such that xy is rational. Then x =
k

l
for some k, l ∈ Z, k 6= 0 and l 6= 0,

and xy =
m

n
for some m,n ∈ Z, n 6= 0. Then y =

xy

x
=

m
n
k
l

=
ml

nk
. Since

ml, nk ∈ Z and nk 6= 0, y is rational. Contradiction. (This is a proof by
contradiction.)

(g) We will prove this statement by contrapositive. Namely, we will assume that
a|b or a|c and we will show that a|(bc). If a|b, then b = ak for some k ∈ Z,
and bc = akc. Since kc ∈ Z, a|(bc). If a|c, then c = ak for some k ∈ Z, and
bc = bak = abk. Since bk ∈ Z, a|(bc).

(h) First we will prove that if A ∩ B = ∅, then (A× B) ∩ (B × A) = ∅. We will
prove this by contrapositive. Assume that (A×B)∩(B×A) 6= ∅. Then there
exists x ∈ (A × B) ∩ (B × A), thus x ∈ A × B and x ∈ B × A. Therefore
x = (y, z) where y ∈ A, z ∈ B, y ∈ B, and z ∈ A. Since y ∈ A and y ∈ B, it
follows that A ∩B 6= ∅.
Next we will prove that if (A× B) ∩ (B × A) = ∅, then A ∩ B = ∅. We will
prove this by contrapositive as well. Assume that A∩B 6= ∅, then there exists
x ∈ A ∩ B, i.e. x ∈ A and x ∈ B. Then (x, x) ∈ A× B and (x, x) ∈ B × A,
so (x, x) ∈ (A×B) ∩ (B × A). Thus (A×B) ∩ (B × A) 6= ∅.

3. (a) Basis step: 1 · 2 = 1·2·3
3

is true, so the statement holds for n = 1.
Inductive step: suppose the equality holds for n = k. Then
1 ·2+2 ·3+3 ·4+ . . .+k(k+1)+(k+1)(k+2) = k(k+1)(k+2)

3
+(k+1)(k+2) =

(k + 1)(k + 2)
(

k
3

+ 1
)

= (k+1)(k+2)(k+3)
3

.
So the equality holds for n = k + 1.

(b) Basis step: f ′(x) = e−x−xe−x = (−1)1e−x(x− 1), so the statement holds for
n = 1.
Inductive step: suppose the statement holds for n = k. Then
f (k+1)(x) =

(
f (k)(x)

)′
=

(
(−1)ke−x(x− k)

)′
= −(−1)ke−x(x−k)+(−1)ke−x =

(−1)k+1e−x(x− k − 1) = (−1)k+1e−x(x− (k + 1)).

(c) Basis step: the statement holds for n = 1 since 5|(1− 1).
Inductive step: suppose 5|(k5−k), then k5−k ≡ 0 (mod 5). Then (k +1)5−
(k+1) ≡ k5+5k4+10k3+10k2+5k+1−k−1 ≡ k5+5k4+10k3+10k2+5k−k ≡
(k5 − k) + 5(k4 + 2k3 + 2k2 + k) ≡ 0 (mod 5).
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