MATH 111

Practice Test 2 - Solutions

1. Read the textbook!
2. (a) If n is an integer such that $5 \mid(n-1)$, then $n \equiv 1(\bmod 5)$. Then $n^{3}+n-2 \equiv$ $1^{3}+1-2 \equiv 0(\bmod 5)$. This implies that $5 \mid\left(n^{3}+n-2\right)$. (This is a direct proof.)
Another proof: If n is an integer such that $5 \mid(n-1)$, then $n-1=5 k$ for some $k \in \mathbb{Z}$. Then $n=5 k+1$, therefore $n^{3}+n-2=(5 k+1)^{3}+(5 k+1)-2=$ $125 k^{3}+75 k^{2}+15 k+1+5 k+1-2=125 k^{3}+75 k^{2}+20 k=5\left(25 k^{3}+15 k^{2}+4 k\right)$. Since $25 k^{3}+15 k^{2}+4 k \in \mathbb{Z}, 5 \mid\left(n^{3}+n-2\right)$. (This is also a direct proof.)
(b) Assume that $\log _{3} 2$ is rational. Then $\log _{3} 2=\frac{m}{n}$ for some $m, n \in \mathbb{Z}, n>0$. Then $3^{\frac{m}{n}}=2$, so $3^{m}=2^{n}$. Since $n>0,3^{m}=2^{n}>1$, so $m>0$. Since $3 \equiv 1(\bmod 2), 3^{m} \equiv 1(\bmod 2)$, so 3^{m} is odd. However, $2^{n}=2 \cdot 2^{n-1}$ is even. We get a contradiction. Therefore $\log _{3} 2$ is irrational. (This is a proof by contradiction.)
(c) We will prove this statement by contrapositive. Assume that n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $7 n^{2}+4=7(2 k+1)^{2}+4=7\left(4 k^{2}+4 k+1\right)+4=$ $28 k^{2}+28 k+11=2\left(14 k^{2}+14 k+5\right)+1$. Since $14 k^{2}+14 k+5 \in \mathbb{Z}, 7 n^{2}+4$ is odd.
(d) We will prove this statement by contrapositive. Assume that $x \geq 1$. Then $x^{2} \geq x$ and $x^{3} \geq x$. Adding these two inequalities gives $x^{2}+x^{3} \geq 2 x$, thus $2 x \ngtr x^{2}+x^{3}$.
(e) First we will prove that if $3 \mid(m n)$, then $3 \mid m$ or $3 \mid n$. We will prove this by contrapositive, namely, we will prove that if $3 \not\langle m$ and $3 \not \backslash n$, then $3 \not \backslash(m n)$. If $3 \wedge m$, then $m=3 k+1$ or $m=3 k+2$ for some $k \in \mathbb{Z}$. If $3 \wedge n$, then $n=3 l+1$ or $n=3 l+2$ for some $l \in \mathbb{Z}$. Thus we have four cases:
Case I: $m=3 k+1, n=3 l+1$. Then $m n=(3 k+1)(3 l+1)=9 k l+3 k+3 l+1=$ $3(3 k l+k+l)+1$. Since $3 k l+k+l \in \mathbb{Z}, 3 X(m n)$.
Case II: $m=3 k+1, n=3 l+2$. Then $m n=(3 k+1)(3 l+2)=9 k l+6 k+3 l+2=$ $3(3 k l+2 k+l)+2$. Since $3 k l+2 k+l \in \mathbb{Z}, 3 \nmid(m n)$.
Case III: $m=3 k+2, n=3 l+1$. Then $m n=(3 k+2)(3 l+1)=9 k l+3 k+$ $6 l+2=3(3 k l+k+2 l)+2$. Since $3 k l+k+2 l \in \mathbb{Z}, 3 \chi(m n)$.
Case IV: $m=3 k+2, n=3 l+2$. Then $m n=(3 k+2)(3 l+2)=9 k l+6 k+$ $6 l+4=3(3 k l+2 k+2 l+1)+1$. Since $3 k l+2 k+2 l+1 \in \mathbb{Z}, 3 \chi(m n)$.
Next we will prove that if $3 \mid m$ or $3 \mid n$, then $3 \mid(m n)$. Here we have two cases: Case I: $3 \mid m$. Then $m=3 k$ for some $k \in \mathbb{Z}$. Then $m n=3 k n$. Since $k n \in \mathbb{Z}$, $3 \mid(m n)$.
Case II: $3 \mid n$. Then $n=3 l$ for some $l \in \mathbb{Z}$. Then $m n=m 3 l=3 m l$. Since
$m l \in \mathbb{Z}, 3 \mid(m n)$.
(This direction we proved directly.)
(f) Assume that there exist a nonzero rational number x and an irrational number y such that $x y$ is rational. Then $x=\frac{k}{l}$ for some $k, l \in \mathbb{Z}, k \neq 0$ and $l \neq 0$, and $x y=\frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $y=\frac{x y}{x}=\frac{\frac{m}{n}}{\frac{k}{l}}=\frac{m l}{n k}$. Since $m l, n k \in \mathbb{Z}$ and $n k \neq 0, y$ is rational. Contradiction. (This is a proof by contradiction.)
(g) We will prove this statement by contrapositive. Namely, we will assume that $a \mid b$ or $a \mid c$ and we will show that $a \mid(b c)$. If $a \mid b$, then $b=a k$ for some $k \in \mathbb{Z}$, and $b c=a k c$. Since $k c \in \mathbb{Z}, a \mid(b c)$. If $a \mid c$, then $c=a k$ for some $k \in \mathbb{Z}$, and $b c=b a k=a b k$. Since $b k \in \mathbb{Z}, a \mid(b c)$.
(h) First we will prove that if $A \cap B=\emptyset$, then $(A \times B) \cap(B \times A)=\emptyset$. We will prove this by contrapositive. Assume that $(A \times B) \cap(B \times A) \neq \emptyset$. Then there exists $x \in(A \times B) \cap(B \times A)$, thus $x \in A \times B$ and $x \in B \times A$. Therefore $x=(y, z)$ where $y \in A, z \in B, y \in B$, and $z \in A$. Since $y \in A$ and $y \in B$, it follows that $A \cap B \neq \emptyset$.
Next we will prove that if $(A \times B) \cap(B \times A)=\emptyset$, then $A \cap B=\emptyset$. We will prove this by contrapositive as well. Assume that $A \cap B \neq \emptyset$, then there exists $x \in A \cap B$, i.e. $x \in A$ and $x \in B$. Then $(x, x) \in A \times B$ and $(x, x) \in B \times A$, so $(x, x) \in(A \times B) \cap(B \times A)$. Thus $(A \times B) \cap(B \times A) \neq \emptyset$.
3. (a) Basis step: $1 \cdot 2=\frac{1 \cdot 2 \cdot 3}{3}$ is true, so the statement holds for $n=1$.

Inductive step: suppose the equality holds for $n=k$. Then
$1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+k(k+1)+(k+1)(k+2)=\frac{k(k+1)(k+2)}{3}+(k+1)(k+2)=$ $(k+1)(k+2)\left(\frac{k}{3}+1\right)=\frac{(k+1)(k+2)(k+3)}{3}$.
So the equality holds for $n=k+1$.
(b) Basis step: $f^{\prime}(x)=e^{-x}-x e^{-x}=(-1)^{1} e^{-x}(x-1)$, so the statement holds for $n=1$.
Inductive step: suppose the statement holds for $n=k$. Then
$f^{(k+1)}(x)=\left(f^{(k)}(x)\right)^{\prime}=\left((-1)^{k} e^{-x}(x-k)\right)^{\prime}=-(-1)^{k} e^{-x}(x-k)+(-1)^{k} e^{-x}=$ $(-1)^{k+1} e^{-x}(x-k-1)=(-1)^{k+1} e^{-x}(x-(k+1))$.
(c) Basis step: the statement holds for $n=1$ since $5 \mid(1-1)$.

Inductive step: suppose $5 \mid\left(k^{5}-k\right)$, then $k^{5}-k \equiv 0(\bmod 5)$. Then $(k+1)^{5}-$ $(k+1) \equiv k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1-k-1 \equiv k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k-k \equiv$ $\left(k^{5}-k\right)+5\left(k^{4}+2 k^{3}+2 k^{2}+k\right) \equiv 0(\bmod 5)$.

