MATH 111

Practice Test 2

Note: the actual test will consist of five or six questions.

1. This test is primarily on chapters 4-6, however, knowledge of previously covered material may be required. Review all terms, notations, and types of proofs in chapters 0-6.
2. Prove the following statements. (Some statements have alternate wording/notation. You should be comfortable with either wording/notation.) Indicate what type of proof (e.g. direct, by contrapositive, or by contradiction) you used.
(a) If n is an integer such that $5 \mid(n-1)$, then $5 \mid\left(n^{3}+n-2\right)$. (Let $n \in \mathbb{Z}$. If $n-1 \equiv 0(\bmod 5)$, then $n^{2}+n-2 \equiv 0(\bmod 5)$.)
(b) The number $\log _{3} 2$ is irrational.
(c) Let $n \in \mathbb{Z}$. If $7 n^{2}+4$ is even, then n is even.
(d) Let $x \in \mathbb{R}$. If $2 x>x^{2}+x^{3}$, then $x<1$.
(e) Let $m, n \in \mathbb{Z}$. Then $3 \mid(m n)$ if and only if $3 \mid m$ or $3 \mid n$.
$($ Let $m, n \in \mathbb{Z}$. Then $m n \equiv 0(\bmod 3)$ if and only if $m \equiv 0(\bmod 3)$ or $n \equiv 0$ $(\bmod 3)$.
(f) The product of a nonzero rational number and an irrational number is irrational.
(g) Let $a, b, c \in \mathbb{Z}$. If $a \nmid(b c)$, then $a \nmid b$ and $a \nmid c$.
(h) Let A and B be sets. Then $A \cap B=\emptyset$ if and only if $(A \times B) \cap(B \times A)=\emptyset$.
3. Use Mathematical Induction to prove the following statements.
(a) Let $n \in \mathbb{N}$. Then $1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$.
(b) Let $f(x)=x e^{-x}$. Then $f^{(n)}(x)=(-1)^{n} e^{-x}(x-n)$ for every positive integer n.
(c) Let $n \in \mathbb{N}$. Then $5 \mid\left(n^{5}-n\right)$.
(Let $n \in \mathbb{N}$. Then $n^{5} \equiv n(\bmod 5)$.)
