MATH 111

Practice Test 3 - Solutions

- 1. Read the textbook.
- 2. (a) This statement is true. For example, if a = -1, then for every real number b, we have $b^2 \ge 0 \ge -1$, so $b^2 \ge a$.
 - (b) This statement is false. For any integer *a*, either $a \le 4$ or $a \ge 5$. If $a \le 4$, then $a^3 + 2a + 3 \le 64 + 8 + 3 = 75 < 100$, so $a^3 + 2a + 3 \ne 100$. If $a \ge 5$, then $a^3 + 2a + 3 \ge 125 + 10 + 3 = 138 > 100$, so $a^3 + 2a + 3 \ne 100$.
 - (c) This statement is false. For example, if a = -1, then there is no integer b such that $b^2 = -1$.
 - (d) This statement is false. For example, $\sqrt{2} + (2 \sqrt{2}) = 2$. We know that $\sqrt{2}$ is irrational (we proved such a theorem). The fact that $2 \sqrt{2}$ is irrational can be proved by contradiction. Namely, assume that $2 \sqrt{2}$ is rational, then $2 \sqrt{2} = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $\sqrt{2} = 2 \frac{m}{n} = \frac{2n-m}{n}$. Since $2n m \in \mathbb{Z}$ and $n \neq 0, \sqrt{2}$ is rational. Contradiction. Finally, $2 = \frac{2}{1}$ is rational.
 - (e) This statement is true. Let a be any irrational number. Then a = 1 + (a-1). Observe that 1 is rational, and a - 1 is irrational (the proof of this is similar to the proof given in previous problem, and is omitted here).
 - (f) This statement is true. For any sets A and B, let $C = A \cup B$. Then $A \cup C = A \cup A \cup B = A \cup B$ and $B \cup C = B \cup A \cup B = A \cup B$, so $A \cup C = B \cup C$.
 - (g) This statement is false. For example, if $A = \{1\}$, $B = \{2\}$, $C = \{1, 2\}$, $D = \{2, 3\}$, then $A \subset C$, $B \subset D$, and $A \cap B = \emptyset$, however, $C \cap D \neq \emptyset$.
 - (h) This statement if true. Suppose that $A \subset C$, $B \subset D$, $C \cap D = \emptyset$, but $A \cap B \neq \emptyset$. Then there is an element $x \in A \cap B$, so $x \in A$ and $x \in B$. Since $A \subset C$ and $B \subset D$, it follows that $x \in C$ and $x \in D$. Then $x \in C \cap D$, thus $C \cap D \neq \emptyset$. We get a contradiction.
- 3. (a) $\{(a, 1), (b, 2), (c, 3)\}$ is a relation from B to A (since it is a subset of $B \times A$). Moreover, it is a function from B to A (since each element of B is the first coordinate of exactly one pair in the relation).
 - (b) $\{(1,b), (1,c), (3,a), (4,b)\}$ is a relation from A to B (since it is a subset of $A \times B$), but it is not a function (e.g. since the image of 1 is not well-defined).
- 4. (a) The relation R is not reflexive: e.g. (1,1) ∉ R since 1 + 1 ≠ 0;
 R is symmetric since if (a, b) ∈ R, then a+b = 0, then b+a = 0, so (b, a) ∈ R;
 R is not transitive: e.g. (1,-1) ∈ R and (-1,1) ∈ R, but (1,1) ∉ R;
 R is not an equivalence relation: e.g. R is not reflexive.

(b) The relation R is not reflexive: e.g. $(0,0) \notin R$ since $\frac{0}{0}$ is undefined, so it is not an element of \mathbb{Q} ; R is not symmetric: e.g. $(0,1) \in R$ since $\frac{0}{1} \in \mathbb{Q}$, but $(1,0) \notin R$ since $\frac{1}{0}$ is

undefined; R is transitive since if $(a, b) \in R$ and $(b, c) \in R$, then $\frac{a}{b} \in \mathbb{Q}$ and $\frac{b}{c} \in \mathbb{Q}$, and then $\frac{a}{c} \in \mathbb{Q}$;

R is not an equivalence relation: e.g. R is not reflexive.

(c) The relation R is not reflexive: (0,0) ∉ R since 0 ⋅ 0 ≯ 0;
R is symmetric since if (a, b) ∈ R, then ab > 0, then ba > 0, so (b, a) ∈ R;
R is transitive since if (a, b) ∈ R and (b, c) ∈ R, then ab > 0 and bc > 0, then either all of a, b, and c are positive or all of them are negative; in either case, ac > 0, so (a, c) ∈ R;
R is not an equivalence relation since R is not reflexive

R is not an equivalence relation since R is not reflexive.

- (d) The relation R is reflexive since for any $a \in \mathbb{Z}$, $a \equiv a \pmod{3}$, so $(a, a) \in R$; R is symmetric since if $(a, b) \in R$, then $a \equiv b \pmod{3}$, then $b \equiv a \pmod{3}$, and then $(b, a) \in R$; R is transitive since if $(a, b) \in R$ and $(b, c) \in R$, then $a \equiv b \pmod{3}$ and $b \equiv c \pmod{3}$, then $a \equiv c \pmod{3}$, so $(a, c) \in R$; R is an equivalence relation since it is reflexive, symmetric, and transitive. The equivalence classes are $[0] = \{a \in \mathbb{Z} \mid a \equiv 0 \pmod{3}\}, [1] = \{a \in \mathbb{Z} \mid a \equiv 1 \pmod{3}\}$, and $[2] = \{a \in \mathbb{Z} \mid a \equiv 2 \pmod{3}\}$.
- (e) The relation R is not reflexive: e.g. (1,1) ∉ R since 1 ≯ 1;
 R is not symmetric: e.g. (2,1) ∈ R and (1,2) ∉ R;
 R is transitive since if (a, b) ∈ R and (b, c) ∈ R, then a > b and b > c, then a > c, so (a, c) ∈ R;
 R is not an equivalence relation since R is not symmetric.
- 5. (a) The function f is not one-to-one: e.g. $5 \cdot 1^2 + 2 = 5(-1)^2 = 2$, but $1 \neq -1$; f is not onto: e.g. there is no integer n such that 5n + 2 = 3 since the only real solution of this equation is $n = \frac{1}{5}$ which is not an integer; f is not bijective: e.g. it is not one-to-one;
 - (b) The function f is one-to-one since if $\frac{1}{x} = \frac{1}{y}$, then x = y; f is not onto: e.g. there is no natural number n such that $\frac{1}{n} = 2$ since the only real solution of this equation is $n = \frac{1}{2}$ which is not a natural number; f is not bijective since it is not onto.
 - (c) The function f is one-to-one: let f(x) = f(y) where $x, y \in \mathbb{R}$. If $f(x) \neq 0$, then $x \neq 0$ and $y \neq 0$, so $\frac{1}{x} = \frac{1}{y}$. Therefore x = y. The function f is onto: let $y \in \mathbb{R}$. If $y \neq 0$, let $x = \frac{1}{y}$. Then $f(x) = \frac{1}{1/y} = y$. If y = 0, then f(0) = y. This function is bijective since it is both one-to-one and onto.

(d) The function f is not one-to-one: e.g. f(1) = f(0) but $1 \neq 0$; f is onto since it is a continuous function with $\lim_{x \to -\infty} = -\infty$ and $\lim_{x \to \infty} = \infty$; f is not bijective since it is not one-to-one.