Practice Test 3 - Solutions

1. Read the textbook.
2. (a) This statement is true. For example, if $a=-1$, then for every real number b, we have $b^{2} \geq 0 \geq-1$, so $b^{2} \geq a$.
(b) This statement is false. For any integer a, either $a \leq 4$ or $a \geq 5$. If $a \leq 4$, then $a^{3}+2 a+3 \leq 64+8+3=75<100$, so $a^{3}+2 a+3 \neq 100$. If $a \geq 5$, then $a^{3}+2 a+3 \geq 125+10+3=138>100$, so $a^{3}+2 a+3 \neq 100$.
(c) This statement is false. For example, if $a=-1$, then there is no integer b such that $b^{2}=-1$.
(d) This statement is false. For example, $\sqrt{2}+(2-\sqrt{2})=2$. We know that $\sqrt{2}$ is irrational (we proved such a theorem). The fact that $2-\sqrt{2}$ is irrational can be proved by contradiction. Namely, assume that $2-\sqrt{2}$ is rational, then $2-\sqrt{2}=\frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $\sqrt{2}=2-\frac{m}{n}=\frac{2 n-m}{n}$. Since $2 n-m \in \mathbb{Z}$ and $n \neq 0, \sqrt{2}$ is rational. Contradiction. Finally, $2=\frac{2}{1}$ is rational.
(e) This statement is true. Let a be any irrational number. Then $a=1+(a-1)$. Observe that 1 is rational, and $a-1$ is irrational (the proof of this is similar to the proof given in previous problem, and is omitted here).
(f) This statement is true. For any sets A and B, let $C=A \cup B$. Then $A \cup C=$ $A \cup A \cup B=A \cup B$ and $B \cup C=B \cup A \cup B=A \cup B$, so $A \cup C=B \cup C$.
(g) This statement is false. For example, if $A=\{1\}, B=\{2\}, C=\{1,2\}$, $D=\{2,3\}$, then $A \subset C, B \subset D$, and $A \cap B=\emptyset$, however, $C \cap D \neq \emptyset$.
(h) This statement if true. Suppose that $A \subset C, B \subset D, C \cap D=\emptyset$, but $A \cap B \neq \emptyset$. Then there is an element $x \in A \cap B$, so $x \in A$ and $x \in B$. Since $A \subset C$ and $B \subset D$, it follows that $x \in C$ and $x \in D$. Then $x \in C \cap D$, thus $C \cap D \neq \emptyset$. We get a contradiction.
3. (a) $\{(a, 1),(b, 2),(c, 3)\}$ is a relation from B to A (since it is a subset of $B \times A$). Moreover, it is a function from B to A (since each element of B is the first coordinate of exactly one pair in the relation).
(b) $\{(1, b),(1, c),(3, a),(4, b)\}$ is a relation from A to B (since it is a subset of $A \times B$), but it is not a function (e.g. since the image of 1 is not well-defined).
4. (a) The relation R is not reflexive: e.g. $(1,1) \notin R$ since $1+1 \neq 0$;
R is symmetric since if $(a, b) \in R$, then $a+b=0$, then $b+a=0$, so $(b, a) \in R$; R is not transitive: e.g. $(1,-1) \in R$ and $(-1,1) \in R$, but $(1,1) \notin R$;
R is not an equivalence relation: e.g. R is not reflexive.
(b) The relation R is not reflexive: e.g. $(0,0) \notin R$ since $\frac{0}{0}$ is undefined, so it is not an element of \mathbb{Q};
R is not symmetric: e.g. $(0,1) \in R$ since $\frac{0}{1} \in \mathbb{Q}$, but $(1,0) \notin R$ since $\frac{1}{0}$ is undefined;
R is transitive since if $(a, b) \in R$ and $(b, c) \in R$, then $\frac{a}{b} \in \mathbb{Q}$ and $\frac{b}{c} \in \mathbb{Q}$, and then $\frac{a}{c} \in \mathbb{Q}$;
R is not an equivalence relation: e.g. R is not reflexive.
(c) The relation R is not reflexive: $(0,0) \notin R$ since $0 \cdot 0 \ngtr 0$;
R is symmetric since if $(a, b) \in R$, then $a b>0$, then $b a>0$, so $(b, a) \in R$;
R is transitive since if $(a, b) \in R$ and $(b, c) \in R$, then $a b>0$ and $b c>0$, then either all of a, b, and c are positive or all of them are negative; in either case, $a c>0$, so $(a, c) \in R$;
R is not an equivalence relation since R is not reflexive.
(d) The relation R is reflexive since for any $a \in \mathbb{Z}, a \equiv a(\bmod 3)$, so $(a, a) \in R$; R is symmetric since if $(a, b) \in R$, then $a \equiv b(\bmod 3)$, then $b \equiv a(\bmod 3)$, and then $(b, a) \in R$;
R is transitive since if $(a, b) \in R$ and $(b, c) \in R$, then $a \equiv b(\bmod 3)$ and $b \equiv c(\bmod 3)$, then $a \equiv c(\bmod 3)$, so $(a, c) \in R$;
R is an equivalence relation since it is reflexive, symmetric, and transitive. The equivalence classes are $[0]=\{a \in \mathbb{Z} \mid a \equiv 0(\bmod 3)\},[1]=\{a \in \mathbb{Z} \mid a \equiv$ $1(\bmod 3)\}$, and $[2]=\{a \in \mathbb{Z} \mid a \equiv 2(\bmod 3)\}$.
(e) The relation R is not reflexive: e.g. $(1,1) \notin R$ since $1 \ngtr 1$;
R is not symmetric: e.g. $(2,1) \in R$ and $(1,2) \notin R$;
R is transitive since if $(a, b) \in R$ and $(b, c) \in R$, then $a>b$ and $b>c$, then $a>c$, so $(a, c) \in R$;
R is not an equivalence relation since R is not symmetric.
5. (a) The function f is not one-to-one: e.g. $5 \cdot 1^{2}+2=5(-1)^{2}=2$, but $1 \neq-1$;
f is not onto: e.g. there is no integer n such that $5 n+2=3$ since the only real solution of this equation is $n=\frac{1}{5}$ which is not an integer;
f is not bijective: e.g. it is not one-to-one;
(b) The function f is one-to-one since if $\frac{1}{x}=\frac{1}{y}$, then $x=y$;
f is not onto: e.g. there is no natural number n such that $\frac{1}{n}=2$ since the only real solution of this equation is $n=\frac{1}{2}$ which is not a natural number; f is not bijective since it is not onto.
(c) The function f is one-to-one: let $f(x)=f(y)$ where $x, y \in \mathbb{R}$. If $f(x) \neq 0$, then $x \neq 0$ and $y \neq 0$, so $\frac{1}{x}=\frac{1}{y}$. Therefore $x=y$.
The function f is onto: let $y \in \mathbb{R}$. If $y \neq 0$, let $x=\frac{1}{y}$. Then $f(x)=\frac{1}{1 / y}=y$. If $y=0$, then $f(0)=y$.
This function is bijective since it is both one-to-one and onto.
(d) The function f is not one-to-one: e.g. $f(1)=f(0)$ but $1 \neq 0$; f is onto since it is a continuous function with $\lim _{x \rightarrow-\infty}=-\infty$ and $\lim _{x \rightarrow \infty}=\infty$; f is not bijective since it is not one-to-one.
