MATH 111

Test 1

September 28, 2010

Name:

- No books, notes, or calculators are allowed.
- Please show all your work.

1. (4 points) Let S and T be sets. Draw a Venn diagram of $\overline{S \cap T}$.
2. (9 points) Let $A=\{x \in \mathbb{Z} \mid 0<x<5\}$ and $B=\{x \in \mathbb{Z}| | x \mid \leq 2\}$, and let \mathbb{Z} be the universal set. Determine the following sets:
(a) $A \cup B$
(b) \bar{A}
(c) $\bar{A} \cap B$
3. (12 points) Determine the truth values of the following statements. (Explain your reasoning!)
(a) $\forall x \in \mathbb{R}|x|>0$
(b) $\exists x \in \mathbb{Z} x^{2}=10$
(c) $\forall x \in \mathbb{N}(x=5 \Rightarrow 2 x \geq 10)$
(d) $\exists x \in \mathbb{Q}(x=5 \Leftrightarrow x=6)$
4. (7 points) Let P and Q be propositions. Prove that the compound propositions $\neg(P \wedge Q)$ and $\neg P \vee \neg Q$ are logically equivalent.
5. (8 points) Which of the following propositions can be proved using a vacuous proof? Prove it (use a vacuous proof).

- Let $n \in \mathbb{Z}$. Then $5 n+3$ is even if and only if $3 n+6$ is odd.
- Let $n \in \mathbb{Z}$. If $4 n+6$ is odd, then $7 n+8$ is odd.
- Let $n \in \mathbb{Z}$. If $3 n+4$ is odd, then $2 n+6$ is even.

6. (10 points) Let $n \in \mathbb{N}$. Prove that $3 n-5$ is even if and only if n is odd.
7. (For extra credit, 8 points) Let P and Q denote statements.
(a) How many non-logically equivalent compound statements in P (i.e. compound statements that contain only one variable, P) are there? List all of them.
(b) How many non-logically equivalent compound statements in P and Q are there? (You do not have to list all of them.)
