MATH 111 Test 1 - Solutions

1. Let \mathbb{R} be the universal set, and let $A=[0,3)$ and $B=(-\infty, 2)$.
(a) Determine and write in the interval notation the following sets:
i. $A \cup B=(-\infty, 3)$
ii. $\bar{B}=[2,+\infty)$
iii. $\bar{A} \cap B=(-\infty, 0)$
(b) How many elements does A have?

It has infinitely many elements.
2. Let P and Q be propositions. Are compound propositions $P \Rightarrow Q$ and $P \vee \neg Q$ logically equivalent? If so, prove it. If not, provide an example of P and Q for which one of these compound propositions is true and the other one is false.
We construct the truth table to check whether the given compound propositions are logically equivalent:

P	Q	$P \Rightarrow Q$	$\neg Q$	$P \vee \neg Q$
T	T	T	F	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

We see that when P and Q have opposite truth values, $P \Rightarrow Q$ and $P \vee \neg Q$ have opposite truth values. Therefore these compound propositions are not logically equivalent.
Example: let P denote " 2 is even", which is a true proposition; let Q denote " 3 is even", which is a false propositions. For these P and Q, the proposition $P \Rightarrow Q$ is false and the proposition $P \vee \neg Q$ is true.
3. Let $x \in \mathbb{R}$, and let $P(x, y)$ denote " $x \geq y+2$ ". Determine the truth values of the following propositions. (Explain your answers!)
(a) $\forall x \exists y P(x, y)$ is true because for any x we can choose $y=x-2$, then $x=x-2+2=$ $y+2$, so $x \geq y+2$.
(b) $\exists y \forall x P(x, y)$ is false. No matter what y is, not all values of x satisfy this inequality: e.g. $x=y$ doesn't satisfy $x \geq y+2$ since it is not true that $y \geq y+2$ (because $0<2$, so $y<y+2$ for any y).
(c) \exists ! $x P(x, 1)$ is false because $P(x, 1)$ denotes " $x \geq 3$ ", and there are more than one value of x greater than or equal to 3 , e.g. $x=3$ and $x=4$.
4. Which of the following implications can be proved using a trivial proof? Prove it (use a trivial proof).

- Let $x \in \mathbb{R}$. If $x^{2}<-25$, then $x<-5$.
- Let $n \in \mathbb{Z}$. If $8<n \leq 39$, then $6 n+4$ is even.
- Let $n \in \mathbb{Z}$. If n is odd, then $4 n$ and $5 n$ are of opposite parity.

Answer: the second implication can be proved using a trivial proof.
Proof. Since $6 n+4=2(3 n+2)$ and $3 n+2 \in \mathbb{Z}$, the number $6 n+4$ is even.
(Note: this is a trivial proof because we proved that the conclusion is true without assuming the hypothesis.)

5 . Let $n \in \mathbb{N}$. Prove that $4 n^{2}-6 n-3$ is an odd integer.
Since $4 n^{2}-6 n-3=4 n^{2}-6 n-4+1=2\left(2 n^{2}-3 n-2\right)+1$ and $2 n^{2}-3 n-2 \in \mathbb{Z}$, the number $4 n^{2}-6 n-3$ is odd.

6 . Let $n \in \mathbb{N}$. Prove that $5 n+3$ is odd if and only if n is even.
(\Rightarrow) We will prove this direction by contrapositive, namely, we will prove that if n is odd, then $5 n+3$ is even.

If n is odd, $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $5 n+3=5(2 k+1)+3=10 k+8=2(5 k+4)$.
Since $5 k+4 \in \mathbb{Z}$, the number $5 n+3$ is even.
(\Leftarrow) If n is even, then $n=2 k$ for some $k \in \mathbb{Z}$. Then $5 n+3=10 k+3=10 k+2+1=$ $2(5 k+1)+1$. Since $5 k+1 \in \mathbb{Z}, 5 n+3$ is odd.
7. (a) Give an example of a family of sets A_{n} (where $n \in \mathbb{N}$) such that $\cup_{n \in \mathbb{N}} A_{n}=\mathbb{R}$ and $\cap_{n \in \mathbb{N}} A_{n}=\mathbb{Z}$.
Let $A_{n}=\cup_{i \in \mathbb{Z}}\left(i-\frac{1}{n}, i+\frac{1}{n}\right)$.
Then $A_{1}=\cup_{i \in \mathbb{Z}}(i-1, i+1)=\mathbb{R}$,
$A_{2}=\cup_{i \in \mathbb{Z}}\left(i-\frac{1}{2}, i+\frac{1}{2}\right)$,
$A_{3}=\cup_{i \in \mathbb{Z}}\left(i-\frac{1}{3}, i+\frac{1}{3}\right)$,
$A_{4}=\cup_{i \in \mathbb{Z}}\left(i-\frac{1}{4}, i+\frac{1}{4}\right)$,
$A_{5}=\cup_{i \in \mathbb{Z}}\left(i-\frac{1}{5}, i+\frac{1}{5}\right)$,
and so on.
All these sets are subsets of \mathbb{R}, so their union is a subset of \mathbb{R}. Since $A_{1}=\mathbb{R}$, the union is \mathbb{R}.
Each set is the union of open intervals containing integers, and these intervals become shorter and shorter. Therefore their intersection contains all integers, but no other numbers.
(Note: show each of the above five sets on the real number line to help you see what they are.)
(b) What are $\cup_{n=3}^{5} A_{n}$ and $\cap_{n=3}^{5} A_{n}$ for your sets?

Notice that $A_{5} \subset A_{4} \subset A_{3}$. Therefore

$$
\cup_{n=3}^{5} A_{n}=A_{3} \cup A_{4} \cup A_{5}=A_{3}=\cup_{i \in \mathbb{Z}}\left(i-\frac{1}{3}, i+\frac{1}{3}\right)
$$

and

$$
\cap_{n=3}^{5} A_{n}=A_{3} \cap A_{4} \cap A_{5}=A_{5}=\cup_{i \in \mathbb{Z}}\left(i-\frac{1}{5}, i+\frac{1}{5}\right) .
$$

