MATH 111

Test 1

February 27, 2006

Name:_____

- No books, notes, or calculators are allowed.
- Please show all your work.

- 1. (12 points) Let \mathbb{R} be the universal set, and let A = [0,3) and $B = (-\infty, 2)$.
 - (a) Determine and write in the interval notation the following sets: i. $A\cup B$

ii. \overline{B}

iii. $\overline{A} \cap B$

(b) How many elements does A have?

2. (6 points) Let P and Q be propositions. Are compound propositions $P \Rightarrow Q$ and $P \lor \neg Q$ logically equivalent? If so, prove it. If not, provide an example of P and Q for which one of these compound propositions is true and the other one is false.

3. (9 points) Let $x \in \mathbb{R}$, and let P(x, y) denote " $x \ge y + 2$ ". Determine the truth values of the following propositions. (Explain your answers!)

(a) $\forall x \exists y P(x, y)$

(b) $\exists y \forall x P(x,y)$

(c) $\exists ! x P(x, 1)$

- 4. (8 points) Which of the following implications can be proved using a trivial proof? Prove it (use a trivial proof).
 - Let $x \in \mathbb{R}$. If $x^2 < -25$, then x < -5.
 - Let $n \in \mathbb{Z}$. If $8 < n \le 39$, then 6n + 4 is even.
 - Let $n \in \mathbb{Z}$. If n is odd, then 4n and 5n are of opposite parity.

5. (5 points) Let $n \in \mathbb{N}$. Prove that $4n^2 - 6n - 3$ is an odd integer.

6. (10 points) Let $n \in \mathbb{N}$. Prove that 5n + 3 is odd if and only if n is even.

- 7. (For extra credit, 8 points)
 - (a) Give an example of a family of sets A_n (where $n \in \mathbb{N}$) such that $\bigcup_{n \in \mathbb{N}} A_n = \mathbb{R}$ and $\bigcap_{n \in \mathbb{N}} A_n = \mathbb{Z}$.

(b) What are $\cup_{n=3}^{5} A_n$ and $\cap_{n=3}^{5} A_n$ for your sets?