MATH 111

Test 1

February 27, 2006

Name:

- No books, notes, or calculators are allowed.
- Please show all your work.

1. (12 points) Let \mathbb{R} be the universal set, and let $A=[0,3)$ and $B=(-\infty, 2)$.
(a) Determine and write in the interval notation the following sets:
i. $A \cup B$
ii. \bar{B}
iii. $\bar{A} \cap B$
(b) How many elements does A have?
2. (6 points) Let P and Q be propositions. Are compound propositions $P \Rightarrow Q$ and $P \vee \neg Q$ logically equivalent? If so, prove it. If not, provide an example of P and Q for which one of these compound propositions is true and the other one is false.
3. (9 points) Let $x \in \mathbb{R}$, and let $P(x, y)$ denote " $x \geq y+2$ ". Determine the truth values of the following propositions. (Explain your answers!)
(a) $\forall x \exists y P(x, y)$
(b) $\exists y \forall x P(x, y)$
(c) \exists ! $x P(x, 1)$
4. (8 points) Which of the following implications can be proved using a trivial proof? Prove it (use a trivial proof).

- Let $x \in \mathbb{R}$. If $x^{2}<-25$, then $x<-5$.
- Let $n \in \mathbb{Z}$. If $8<n \leq 39$, then $6 n+4$ is even.
- Let $n \in \mathbb{Z}$. If n is odd, then $4 n$ and $5 n$ are of opposite parity.

5. (5 points) Let $n \in \mathbb{N}$. Prove that $4 n^{2}-6 n-3$ is an odd integer.
6. (10 points) Let $n \in \mathbb{N}$. Prove that $5 n+3$ is odd if and only if n is even.
7. (For extra credit, 8 points)
(a) Give an example of a family of sets A_{n} (where $n \in \mathbb{N}$) such that $\cup_{n \in \mathbb{N}} A_{n}=\mathbb{R}$ and $\cap_{n \in \mathbb{N}} A_{n}=\mathbb{Z}$.
(b) What are $\cup_{n=3}^{5} A_{n}$ and $\cap_{n=3}^{5} A_{n}$ for your sets?
