1. Let \(P(x) \) denote “\(x = -2 \)” and let \(Q(x) \) denote “\(x^2 = 4 \)” (as in exercise 2.16 in the book). Determine (and explain!) the truth values of the following statements:

(a) \(\exists x \neg P(x) \)
(b) \(\forall x (P(x) \lor Q(x)) \)
(c) \(\exists x (P(x) \land Q(x)) \)
(d) \(\forall x (P(x) \implies Q(x)) \)
(e) \(\exists x (Q(x) \implies P(x)) \)
(f) \(\forall x (P(x) \iff Q(x)) \)

2. Let \(F(x, y) \) be statement “\(x \) can fool \(y \)”, where the domain for both variables is the set of all people in the world. Use quantifiers to express each of the following statements:

(a) Mike can fool everybody.
(b) Everybody can fool somebody.
(c) No one can fool both Fred and Jerry.

3. Let \(Q(x, y) \) denote “\(x + y = 0 \)”. What are the truth values of the statements \(\exists y \forall x Q(x, y) \) and \(\forall x \exists y Q(x, y) \)? Explain your answers!

4. Rewrite each of the following statements so that negations appear only within predicates:

(a) \(\neg \forall y \exists x P(x, y) \)
(b) \(\neg (\exists x \exists y \neg P(x, y) \land \forall x \forall y Q(x, y)) \)

5. Let \(x \in \mathbb{R} \). Prove that if \(-2 < x < 4\), then \(x^2 + 2x + 4 \geq 3 \).

6. Let \(n \in \mathbb{Z} \). Prove that if \(n^2 - 2n + 5 \leq 3 \), then \(n \) is even.

7. Prove that if \(n \) is an integer, then \(2n^2 - 8n + 10 \) is an even integer.

8. (Problem 3.2 on page 64.) Prove that if \(x \) is an even integer, then \(5x - 3 \) is an odd integer.