Practice Test 1

Note: the actual test will consist of five or six questions (some with two or three parts).

1. Review all terms, notations, and types of proofs studied in chapters $0-3$.
2. Let $U=\{x \in \mathbb{Z} \mid 0 \leq x \leq<10\}$ be the universal set, $A=\{x \in U \mid x$ is even $\}$, $B=\{1,2,3,4,5\}$.
(a) Draw a Venn diargram that illustrates the above sets.
(b) Determine (i.e. list all the elements of) the following sets: $A \cap B, \bar{A}, A \cup \bar{B}$.
(c) How many elements does $A \times B$ have?
(d) List any three elements of $A \times B$.
3. Let $A=\{1\}, B=\{2\}, C=\{\{3\}\}, D=\{1,\{2\},\{1,2,3\}\}$.
(a) Which of the following statements are true: $A \in D, A \subset D, B \in D, B \subset D$, $C \in D, C \subset D, \emptyset \in D, \emptyset \subset D ?$
(b) What are the cardinalities of these four sets?
4. Let $A_{n}=\left[\frac{1}{n}, \frac{n+1}{n}\right)$ for each $n \in \mathbb{N}$. Determine $\cup_{n \in \mathbb{N}} A_{n}$ and $\cap_{n \in \mathbb{N}} A_{n}$ (no formal proof is required, but please provide an explanation of your answer; a picture might be helpful).
5. (a) Show that $P \Leftrightarrow Q$ and $(P \wedge Q) \vee((\neg P) \wedge(\neg Q))$ are logically equivalent.
(b) The compound statement $(P \Leftrightarrow Q) \Leftrightarrow((P \wedge Q) \vee((\neg P) \wedge(\neg Q)))$ is a
\qquad .
(c) The compound statement $(P \Leftrightarrow Q) \Leftrightarrow \neg((P \wedge Q) \vee((\neg P) \wedge(\neg Q)))$ is a
6. Determine the truth values of the following statements (where $x, y, z \in \mathbb{R}$).
(a) $\exists!x\left(x^{2}=8\right)$
(b) $\forall x \exists y(x y=0)$
(c) $\forall x \exists!y(x y=0)$
(d) $\exists x \forall y(x y=0)$
(e) \exists ! $x \forall y(x y=0)$
(f) $\forall x \forall z \exists y(x+y=z)$
(g) $\forall x \exists y \forall z(x+y=z)$
7. For each of the following expressions, give an example of a propositional function $P(x, y)$ that makes the statement true; and (a different, of course) example of $P(x, y)$ that makes the statement false. Explain why your examples satisfy the requirements!
(a) $\exists x \exists y P(x, y)$
(b) $\exists x \forall y P(x, y)$
(c) $\forall x \exists y P(x, y)$
(d) $\forall x \forall y P(x, y)$
8. Let n and m be integers. Prove the following statements and state what types of proof you used.
(a) If $3 n^{2}+5 n$ is odd, then $n \geq 10$.
(b) If n is even, then $3 n^{2}-2 n-5$ is odd.
(c) If $n-5 m$ is odd, then n and m are of the opposite parity.
9. Let x be a real number. Prove the following statements and state what types of proof you used.
(a) If $x>-7$, then $-5-x^{2}<0$.
(b) If $|x|=5$, then $x^{2}+x+1>20$.
