Practice Test 1

Note: the actual test will consist of five or six questions (some with two or three parts).

- 1. Review all terms, notations, and types of proofs studied in chapters 0–3.
- 2. Let $U = \{x \in \mathbb{Z} \mid 0 \le x \le 10\}$ be the universal set, $A = \{x \in U \mid x \text{ is even}\}, B = \{1, 2, 3, 4, 5\}.$
 - (a) Draw a Venn diargram that illustrates the above sets.
 - (b) Determine (i.e. list all the elements of) the following sets: $A \cap B$, \overline{A} , $A \cup \overline{B}$.
 - (c) How many elements does $A \times B$ have?
 - (d) List any three elements of $A \times B$.
- 3. Let $A = \{1\}, B = \{2\}, C = \{\{3\}\}, D = \{1, \{2\}, \{1, 2, 3\}\}.$
 - (a) Which of the following statements are true: $A \in D, A \subset D, B \in D, B \subset D, C \in D, C \subset D, \emptyset \in D, \emptyset \subset D$?
 - (b) What are the cardinalities of these four sets?
- 4. Let $A_n = \left[\frac{1}{n}, \frac{n+1}{n}\right)$ for each $n \in \mathbb{N}$. Determine $\bigcup_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} A_n$ (no formal proof is required, but please provide an explanation of your answer; a picture might be helpful).
- 5. (a) Show that $P \Leftrightarrow Q$ and $(P \land Q) \lor ((\neg P) \land (\neg Q))$ are logically equivalent.
 - (b) The compound statement $(P \Leftrightarrow Q) \Leftrightarrow ((P \land Q) \lor ((\neg P) \land (\neg Q)))$ is a
 - (c) The compound statement $(P \Leftrightarrow Q) \Leftrightarrow \neg((P \land Q) \lor ((\neg P) \land (\neg Q)))$ is a
- 6. Determine the truth values of the following statements (where $x, y, z \in \mathbb{R}$).
 - (a) $\exists !x \ (x^2 = 8)$
 - (b) $\forall x \exists y \ (xy = 0)$
 - (c) $\forall x \exists ! y \ (xy = 0)$
 - (d) $\exists x \forall y \ (xy = 0)$
 - (e) $\exists ! x \forall y \ (xy = 0)$
 - (f) $\forall x \forall z \exists y \ (x+y=z)$
 - (g) $\forall x \exists y \forall z \ (x+y=z)$

- 7. For each of the following expressions, give an example of a propositional function P(x, y) that makes the statement true; and (a different, of course) example of P(x, y) that makes the statement false. Explain why your examples satisfy the requirements!
 - (a) $\exists x \exists y P(x, y)$
 - (b) $\exists x \forall y P(x, y)$
 - (c) $\forall x \exists y P(x, y)$
 - (d) $\forall x \forall y P(x, y)$
- 8. Let n and m be integers. Prove the following statements and state what types of proof you used.
 - (a) If $3n^2 + 5n$ is odd, then $n \ge 10$.
 - (b) If n is even, then $3n^2 2n 5$ is odd.
 - (c) If n 5m is odd, then n and m are of the opposite parity.
- 9. Let x be a real number. Prove the following statements and state what types of proof you used.
 - (a) If x > -7, then $-5 x^2 < 0$.
 - (b) If |x| = 5, then $x^2 + x + 1 > 20$.